

 TCD | | Page 1 | 2024-02-28

Automotive Electronics
User Manual
X_CAN

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

2 | 306

Table of contents page

1. X_CAN .. 5

1.1 FEATURES ... 5

1.2 BLOCK DIAGRAM .. 6

1.3 TOP - TOP LEVEL ... 6

1.3.1 Software Interface ... 6

1.3.2 Functional Description ... 7

1.3.2.1 AXI Multiplexer ...7

1.3.2.2 Message Handler ..7

1.3.2.3 Protocol Controller ...8

1.3.2.4 PWME ...8

1.3.2.5 Hardware Debug Port ...8

1.3.2.6 Interrupt controller ...9

1.4 MH – MESSAGE HANDLER ... 9

1.4.1 Overview .. 9

1.4.2 Features ... 10

1.4.3 Block Diagram .. 10

1.4.4 Software Interface ... 11

1.4.4.1 Register Map ...11

1.4.4.2 Register Description ..16

1.4.4.3 Local Memory Map (L_MEM Map) ...102

1.4.5 Functional Description ... 104

1.4.5.1 TX Message Handler ...105

1.4.5.2 RX Message Handler ...108

1.4.5.3 Descriptor Message Handler ...110

1.4.5.4 DMA Message Handler ...115

1.4.5.5 TX Descriptor ..122

1.4.5.6 TX Message Header Definition ..130

1.4.5.7 RX Descriptor ..132

1.4.5.8 RX Message Header Definition ...137

1.4.5.9 TX Message ...139

1.4.5.10 RX Message in Normal Mode ...142

1.4.5.11 RX Message in Continuous Mode ...146

1.4.5.12 Descriptor Acknowledgement ..147

1.4.5.13 TX FIFO Queue ..149

1.4.5.14 TX Priority Queue ...155

1.4.5.15 RX FIFO Queue in Normal Mode ...159

1.4.5.16 RX FIFO Queue in Continuous Mode ..166

1.4.5.17 TX FIFO Queue Data Flow ...169

1.4.5.18 TX Priority Queue Data Flow ..171

1.4.5.19 RX FIFO Queue Data Flow in Normal Mode ..172

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

3 | 306

1.4.5.20 RX FIFO Queue Data Flow in Continuous Mode ...174

1.4.5.21 TX-SCAN ..176

1.4.5.22 TX Filter...186

1.4.5.23 RX Filter ..190

1.4.5.24 Local Memory Controller ..199

1.4.5.25 Trace and Debug ...202

1.4.5.26 RX and TX Statistics ...208

1.4.5.27 Register Access ...209

1.4.5.28 Register Protection ...210

1.4.5.29 Error and Exception Handling ...214

1.4.5.30 Interrupts ..225

1.4.5.31 Clock and Reset ..233

1.4.6 Application Information ... 234

1.4.6.1 Queue Status Flags ..234

1.4.6.2 Cluster ...235

1.4.6.3 Performances ..235

1.4.7 Programming Guidelines ... 239

1.4.7.1 Initial MH Start Procedure ..239

1.4.7.2 Stopping MH Procedure ..240

1.4.7.3 RX FIFO Queue Initial Start ..241

1.4.7.4 Restarting a RX FIFO Queue ..243

1.4.7.5 Aborting a RX FIFO Queue ..243

1.4.7.6 TX FIFO Queue Initial Start ..244

1.4.7.7 Restarting a TX FIFO Queue ..246

1.4.7.8 Aborting a TX FIFO Queue ...246

1.4.7.9 TX Priority Queue Initialization ...247

1.4.7.10 Starting a TX Priority Queue Slot ..248

1.4.7.11 Aborting a TX Priority Queue slot ...249

1.4.7.12 RX Filter Setting ..249

1.4.7.13 TX Filter Setting ..250

1.4.7.14 Timeout Setting ..250

1.4.8 PRT and ENABLE Signal .. 253

1.5 PRT – PROTOCOL CONTROLLER .. 254

1.5.1 Overview .. 254

1.5.2 Features ... 254

1.5.3 Block Diagram .. 254

1.5.4 Software Interface ... 255

1.5.4.1 Register Map ...255

1.5.4.2 Register Description ..257

1.5.5 Functional Description ... 270

1.5.5.1 PRT static configuration ..271

1.5.5.2 Software Reset ..271

1.5.5.3 Operating Mode ..271

1.5.5.4 Starting and Stopping the Module ..272

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

4 | 306

1.5.5.5 Reaction on Exceptions at the TX_MSG and RX_MSG Interfaces ...274

1.5.5.6 Controlling the Module’s Clock Input ...275

1.5.5.7 Transceiver Interface ..276

1.5.5.8 Hardware Timestamping...276

1.5.5.9 Trace and Debug ...277

1.5.6 Application Information ... 278

1.6 PWME – PULSE WIDTH MODULATION ENCODER .. 280

1.6.1 Overview .. 280

1.6.2 Features ... 280

1.6.3 Block Diagram .. 280

1.6.4 Software interface ... 281

1.6.4.1 PWME Configuration (PWME_CFG) ..281

1.6.5 Functional description .. 281

1.6.5.1 Transparent Mode ..282

1.6.5.2 PWM encoded Mode ..282

1.7 IRC - INTERRUPT CONTROLLER .. 283

1.7.1 Overview .. 283

1.7.2 Software Interface ... 283

1.7.2.1 Register Map ...283

1.7.2.2 Register Description ..284

1.7.3 Functional Description ... 297

1.8 CLOCK DOMAINS AND RESETS ... 298

1.8.1 Clock Domains ... 298

1.8.1.1 Behavior While Not Clocked ...299

1.8.2 Resets ... 299

1.8.2.1 Behavior While Reset Active ...299

1.9 APPLICATION INFORMATION ... 299

1.9.1 Bit Rate and Performance .. 299

1.9.2 Time Stamping Offset .. 300

1.10 DETAILED DESIGN INFORMATION ... 300

1.10.1 Memory needs ... 300

1.11 GLOSSARY ... 301

1.12 REFERENCES .. 303

1.13 REVISION HISTORY .. 303

1.14 DISCLAIMER ... 305

TOP_1

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

5 | 306

1. X_CAN

The X_CAN is the new CAN Communication Controller IP supporting CAN XL protocol. It can be

integrated as part of a SoC. It is described in VHDL on RTL level, prepared for synthesis. The X_CAN

performs communication according to ISO11898-1:2015 and CiA610-1.

The X_CAN can be connected to a wide range of HOST CPUs via its 32bit interface. The clock domain

concept allows the separation between the high precision CAN clock and the HOST clock, which may

be generated by an FM-PLL.

1.1 Features

• Conform with ISO11898-1:2015 and CiA610-1

• CAN CC (CAN classic) with up to 8 data bytes and up to 1Mbit/s

• CAN FD (CAN flexible data rate) with up to 64 data bytes and up to 8Mbit/s

• CAN XL (CAN extended data length) with up to 2048 data bytes and up to 20Mbit/s

• 1 Priority Queue, up to 32 slots, priority based on the arbitration field of the CAN frame

• 8 TX FIFO queues, each with up to 1024 messages

• 8 RX FIFO queues, each with up to 1024 messages

• TX message filtering with up to 16 filter elements

• RX message filtering with up to 255 filter elements, while each can compare one 32bit word

(The actual usable number of filter elements depends on CAN clock frequency, CAN bit

rate, and Local Memory performance)

• Internal DMA engine, X_CAN is the DMA master for message handling

- Message storage in system memory

- Low CPU impact, any accesses to/from the system memory are done using the internal DMA

engine (less interrupts needed)

• Requires only small local memory

- Approx 4Kbytes for up to 255 RX filter elements

- Multiple X_CAN can share the same Local Memory

• Maskable module interrupts with three categories: Functional, Functional Error and Safety

• Three clock domains (HOST, CAN, TIMEBASE clock domains)

• CAN Error Logging

• Fault Injection Module

• Programmable loop-back test mode

• Power-down support

• AXI4-Lite slave interface (HOST_AXI) (compliant to AMBA 4 ARM Ltd protocol, see [5])

• AXI4 master DMA interface (DMA_AXI) (compliant to AMBA 4 ARM Ltd protocol, see [5])

• AXI4 master Local Memory interface (MEM_AXI) (compliant to AMBA 4 ARM Ltd protocol, see

[5])

TOP_2

TOP_3

TOP_7

TOP_8

TOP_9

TOP_10

TOP_11

TOP_15

TOP_16

TOP_17

TOP_18

TOP_19

TOP_1029

TOP_1030

TOP_24

TOP_25

TOP_12

TOP_13

TOP_14

TOP_26

TOP_20

TOP_21

TOP_22

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

6 | 306

1.2 Block Diagram

The following block diagram shows the internal structure of the X_CAN IP and the interconnection to

the SoC. The chapter 'Functional Description' provides detailed information to this figure.

X_CAN
XCAND_TOP

Protocol Controller
XCAN_PRT

Message Handler
XCAND_MH

AXI Bus
Message Bus
Discrete wire

Interrupt Controller
XCAND_TOP_IRC

PWM

Encoder

XCAN_PWME

RX_MSG

TX_MSG

ENABLE

EVENTS

CAN_RX

RX_MSG

TX_MSG

D_TX

D_RX

PWME_CFG[18]

CAN_TX

CAPTURE

TIMESTAMP[64]
TIMEBASE_TIMECDC

CDC_TIMEBASE

ENABLE

XLT

TXD

ONLY_CC (static)

ONLY_CC_FD (static)

STAT_ACT

SAMPLE_POINT

EVENTS

AXI Multiplexer
XCAND_TOP_MUX

HOST_AXI

HOST_AXI

PRT_EVENTS

MH_EVENTS

REG_AXIPRT_REG_AXI

MH_HOST_AXI

IRC_HOST_AXI

MEM_AXI

SAFETY_INT

ERR_INT

FUNC_INT
CLOCK_ACTIVE

MEM_SFTY_CE

MEM_SFTY_UE

CDC
CDC_EVENTS

CLOCK_ACTIVE

System
Interrupt

Controller

Peripheral
Interconnect

Main
Interconnect

L_MEM
(Local Memory)

S_MEM
(System Memory)

Debug

CAN

Transceiver

Time

Base

OTP

Bond-out

HDPHDP
XCAND_TOP_HDP

DMA_AXI

Clock Check
C2C_CHECK

CDC
CDC_AXI32

CDC
CDC_SIGNAL

CDC
CDC_TX_MSG

CDC
CDC_RX_MSG

Clock Check
C2C_CHECK

Figure: XCAND_TOP

1.3 TOP - Top Level

1.3.1 Software Interface

The registers banks of the modules are memory mapped by the AXI Multiplexer as depicted in the

following figure.

Address Map of HOST_AXI

0x000

0xA00

0xB00

(byte addresses, data width = 32 bit)

Interrupt Controller

0x900

Message Handler

Protocol Controller

General

TX FIFO Queues

RX FIFO Queues

TX Priority Queue

TX/RX Filter

Interrupt

0x100

0x300

0x400

0x600

0x700

Misc
0x800

Figure: XCAND_TOP memory map

Detailed register description of Message Handler (MH), Protocol Controller (PRT) and Interrupt

Controller (IRC) can be found in the 'Software Interface' section of the respective chapters.

TOP_27

TOP_916

TOP_28

TOP_29

TOP_848

TOP_990

TOP_66

TOP_67

TOP_68

TOP_991

TOP_37

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

7 | 306

1.3.2 Functional Description

The top level of the X_CAN IP embeds all digital blocks required for communication on one CAN bus.

To start up the X_CAN IP, the Message Handler and the Protocol Controller must be configured

beforehand. The Message Handler must be started first (writing a 1 to the MH_CTRL.START bit) and

afterwards, the Protocol Controller must be started (writing a 1 to the CTRL.STRT bit). Detailed

descriptions are provided by PRT and MH chapters later in this document.

The blocks of the top level are described in the following chapters.

1.3.2.1 AXI Multiplexer

The X_CAN embeds three register banks, containing configuration, control, status, and event

information. They are in the modules Message Handler, Protocol Controller and Interrupt controller

and are accessible via peripheral interconnect through HOST_AXI interface and IP internal AXI

Multiplexer.

• When an access is performed to a non-mapped register in the address range, a SLVERR is

provided as a response.

• When a read access to write-only registers or a write access to read-only registers is performed, a

SLVERR is provided as a response.

• When a read or write access is performed outside the address range of the Interrupt Controller

and the Message Handler and the Protocol Controller, a DECERR is provided as a response.

• When a write access is performed and write strobe signals are not set to 0b1111, a SLVERR is

provided as a response. Only 32bit write access is allowed.

1.3.2.2 Message Handler

All functions concerning the storage and scheduling of CAN messages are implemented in the

Message Handler (MH). The TX path supports the storage of CAN messages in 8 TX FIFO Queues and

one TX Priority Queue. The RX path provides 8 RX FIFO Queues. FIFO data is physically stored in

System Memory (S_MEM) and managed by descriptors. TX and RX Filters provide methods to accept

or deny CAN Messages and (for RX only) to determine the target RX FIFO for data storage.

The MH will be configured and controlled by HOST CPU via HOST_AXI interface. CAN messages and

descriptors are transported between System Memory and local memory autonomously by an internal

DMA, which is connected to DMA_AXI. For fast access, the MH needs a Local Memory (L_MEM) which

is connected via MEM_AXI interface. Depending on the chosen SoC integration, multiple X_CAN IPs can

share the same local RAM.

Detailed description is provided by the MH section.

TOP_38

TOP_934

TOP_40

TOP_64

TOP_65

TOP_936

TOP_937

TOP_1021

TOP_1022

TOP_46

TOP_907

TOP_911

TOP_912

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

8 | 306

1.3.2.3 Protocol Controller

The Protocol Controller (PRT) performs CAN communication as specified in ISO 11898-1:2015

(Classical CAN and CAN FD) and in CiA610-1 (CAN XL). The bitrate can be configured to values up to

20MBit/s at a clock speed of 160MHz, depending on the used semiconductor technology. For the

connection to the physical layer, additional transceiver hardware is required.

The PRT does not provide internal buffering of frames, so that data must be transferred by IP internal

Message Busses in 32 bit slices in real-time while (de)-serializing them on the CAN Bus. Thus, single

data transfers at the internal Message Busses are closely time-synchronized to the schedule at the

CAN bus.

Detailed description is provided by PRT section.

1.3.2.4 PWME

The module PWME implements the PWM encoding as specified in [2]. When transceiver mode

switching is enabled, the PWME encodes the CAN_TX input signal during a CAN XL frame’s data phase

and during ADH bit, to generate the PWM encoded output signal TXD.

Detailed description is provided by PWME section.

1.3.2.5 Hardware Debug Port

The X_CAN provides a 16 bit Hardware Debug Port (HDP), intended to be multiplexed to SoC output

pins in a special X_CAN hardware debug mode. Internal signals can be multiplexed to this interface

and be observed via a logic analyzer.

The use of this feature requires deep knowledge of internal behavior of the X_CAN and thus require

support from the IP provider.

The internal signals are organized in pre-defined sets which are selected by HDP.HDP_SEL. The

following tables describe the signal sets.

HDP [15:0]
HDP_SEL = 0

(MH debug port)

HDP_SEL = 1

(PRT interface signals)

15 MH_HDP[15] TX_DU

14 MH_HDP[14] RX_DO

13 MH_HDP[13] BUS_OFF

12 MH_HDP[12] E_PASSIVE

11 MH_HDP[11] E_ACTIVE

10 MH_HDP[10] BUS_ERR

9 MH_HDP[9] TX_EVT

8 MH_HDP[8] RX_EVT

TOP_50

TOP_908

TOP_913

TOP_914

TOP_179

TOP_909

TOP_915

TOP_892

TOP_893

TOP_894

TOP_895

TOP_897

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

9 | 306

HDP [15:0]
HDP_SEL = 0

(MH debug port)

HDP_SEL = 1

(PRT interface signals)

7 MH_HDP[7] STAT_ACT[1]

6 MH_HDP[6] STAT_ACT[0]

5 MH_HDP[5] XLT

4 MH_HDP[4] D_RX

3 MH_HDP[3] D_TX

2 MH_HDP[2] SAMPLE_POINT

1 MH_HDP[1] CAN_TX

0 MH_HDP[0] CAN_CLK

Detailed description of the MH Debug Port can be found in the 'Trace and Debug' section of the MH

chapter.

1.3.2.6 Interrupt controller

The X_CAN IP is equipped with a central interrupt controller (IRC). It captures all events of the MH

and PRT and can be configured for each event individually to interrupt the HOST CPU.

Detailed description is provided by IRC - Interrupt Controller section.

1.4 MH – Message Handler

1.4.1 Overview

The MH is located in between the main interconnect and the PRT.

It is designed to read TX CAN message data from System Memory (S_MEM) and to send them to the

PRT.

On the other direction, it provides the RX CAN message data to the S_MEM when they are received by

the PRT.

Status feedback is given to the SW for every CAN RX and TX messages directly in the S_MEM, avoiding

register accesses.

All functions, concerning the storage and scheduling of CAN messages, are implemented in the

Message Handler (MH). The TX path supports the storage of CAN messages in 8 TX FIFO Queues and

one TX Priority Queue. The RX path provides 8 RX FIFO Queues. FIFO data is physically stored in

S_MEM and managed by descriptors. TX and RX Filters provide methods to accept or deny CAN

Messages and, for RX only, to determine the target RX FIFO for data storage.

The MH will be configured and controlled by HOST CPU via HOST_AXI interface. CAN messages and

descriptors are transported between S_MEM and Local Memory (L_MEM) autonomously by an internal

DMA, which is connected to DMA_AXI interface. The MH needs an L_MEM, which is connected via

TOP_992

TOP_938

TOP_939

TOP_940

MH_1

MH_1455

MH_2

MH_3

MH_4

MH_5

MH_1457

MH_1458

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

10 | 306

MEM_AXI interface. Depending on the chosen SoC integration, multiple X_CAN can share the same

L_MEM.

1.4.2 Features

• Functional and Error interrupts

• Safety interrupts

• Safety measures build-in:

• Data path parity protection

• Parity protection on address pointers

• linked list descriptor protected by CRC

• Register bank protected by CRC

• Interface timeout protection (PRT and AXI master interfaces)

• TX message priority based on ID and IDE and SRR and RTR

• Up to 8 TX FIFO queues can be defined

• Up to 8 RX FIFO queues can be defined

• 1 Priority Queue with a programmable number of slots, limited to 32

• TX message filtering with up to 16 filter definitions

• RX message filtering with up to 255 filter definitions

• Classical CAN and CAN FD supported

• CAN XL supported

• Fully synchronous design

• Little Endian

1.4.3 Block Diagram

MH_8

MH_26

MH_27

MH_28

MH_29

MH_30

MH_31

MH_32

MH_33

MH_34

MH_35

MH_36

MH_37

MH_38

MH_39

MH_40

MH_41

MH_42

MH_2749

MH_43

MH_44

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

11 | 306

XCAND_MH

(MESSAGE HANDLER)

XCAND_MH_RX

(RX MESSAGE HANDLER)

TX_MSG

RX_MSG

DMA_AXI

XCAND_MH_MEM_CTRL
(LOCAL MEMORY

CONTROLLER)

HOST_AXI
XCAND_MH_REG

XCAND_MH_DESC
(DESCRIPTOR MESSAGE

HANDLER)

XCAND_MH_TX

(TX MESSAGE HANDLER)
RESET_N

CLK

INTERRUPTS

CLK_AXI

MEM_AXI

ENABLE

XCAND_MH_DMA

(DMA MESSAGE HANDLER)

Read Channel 2
(TX DMA Channel)

A
X

I
M

a
s
te

r
in

te
rf

a
c
e D
M

A
 W

ri
te

A
rb

it
ra

ti
o

n

D
M

A
 R

e
a
d

A
rb

it
ra

ti
o
n

Read Channel 0
(RX DESC DMA Channel)

Read Channel 1
(TX DESC DMA Channel)

Write Channel 1

(ACK DESC DMA Channel)

Write Channel 0
(RX DMA Channel)

MH_SM_00_REG_REG
_CRC_CHECK

MH_SM_13_MEMCTRL
_TO_CHECK

Parity added on read data

L_MEM

MH_SM_16_DMA_AXI_
TO_CHECK

Figure: Message Handler block diagram

1.4.4 Software Interface

1.4.4.1 Register Map

Address
offset

Register name Description Access
Initial
value

0x000 VERSION Release Identification Register read-only 0x05600000

MH global control and status registers

0x004 MH_CTRL Message Handler Control register read-write 0x00

0x008 MH_CFG
Message Handler Configuration

register
read-write 0x0700

0x00C MH_STS Message Handler Status register read-only 0x00

0x010 MH_SFTY_CFG
Message Handler Safety Configuration

register
read-write 0x00

MH_45

MH_48

MH_1462

MH_2656

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

12 | 306

0x14 MH_SFTY_CTRL
Message Handler Safety Control

register
read-write 0x00

0x18 RX_FILTER_MEM_ADD RX Filter Base Address register read-write 0x0

0x1C TX_DESC_MEM_ADD TX Descriptor Base Address register read-write 0x0

0x20 AXI_ADD_EXT AXI address extension register read-write 0x0

0x24 AXI_PARAMS AXI parameter register read-write 0x0

0x028 MH_LOCK Message Handler Lock register read-write 0x00

TX FIFO Queues control and status registers

0x100 TX_DESC_ADD_PT
TX descriptor current address pointer

register
read-only 0x0

0x104 TX_STATISTICS
Unsuccessful and Successful message

counter registers
read-write 0x0

0x108 TX_FQ_STS0 TX FIFO Queue Status register read-only 0x0

0x10C TX_FQ_STS1 TX FIFO Queue Status register read-only 0x0

0x110 TX_FQ_CTRL0 TX FIFO Queue Control register 0 read-write 0x0

0x114 TX_FQ_CTRL1 TX FIFO Queue Control register 1 read-write 0x0

0x118 TX_FQ_CTRL2 TX FIFO Queue Control register 2 read-write 0x0

0x120 TX_FQ_ADD_PT0
TX FIFO Queue 0 Current Address

Pointer register
read-only 0x0

0x124 TX_FQ_START_ADD0
TX FIFO Queue 0 Start Address

register
read-write 0x0

0x128 TX_FQ_SIZE0 TX FIFO Queue 0 Size register read-write 0x0

0x130 TX_FQ_ADD_PT1
TX FIFO Queue 1 Current Address

Pointer register
read-only 0x0

0x134 TX_FQ_START_ADD1
TX FIFO Queue 1 Start Address

register
read-write 0x0

0x138 TX_FQ_SIZE1 TX FIFO Queue 1 Size register read-write 0x0

0x140 TX_FQ_ADD_PT2
TX FIFO Queue 2 Current Address

Pointer register
read-only 0x0

0x144 TX_FQ_START_ADD2
TX FIFO Queue 2 Start Address

register
read-write 0x0

0x148 TX_FQ_SIZE2 TX FIFO Queue 2 Size register read-write 0x0

0x150 TX_FQ_ADD_PT3
TX FIFO Queue 3 Current Address

Pointer register
read-only 0x0

0x154 TX_FQ_START_ADD3
TX FIFO Queue 3 Start Address

register
read-write 0x0

0x158 TX_FQ_SIZE3 TX FIFO Queue 3 Size register read-write 0x0

0x160 TX_FQ_ADD_PT4
TX FIFO Queue 4 Current Address

Pointer register
read-only 0x0

0x164 TX_FQ_START_ADD4
TX FIFO Queue 4 Start Address

register
read-write 0x0

0x168 TX_FQ_SIZE4 TX FIFO Queue 4 Size register read-write 0x0

0x170 TX_FQ_ADD_PT5 TX FIFO Queue 5 Current Address read-only 0x0

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

13 | 306

Pointer register

0x174 TX_FQ_START_ADD5
TX FIFO Queue 5 Start Address

register
read-write 0x0

0x178 TX_FQ_SIZE5 TX FIFO Queue 5 Size register read-write 0x0

0x180 TX_FQ_ADD_PT6
TX FIFO Queue 6 Current Address

Pointer register
read-only 0x0

0x184 TX_FQ_START_ADD6
TX FIFO Queue 6 Start Address

register
read-write 0x0

0x188 TX_FQ_SIZE6 TX FIFO Queue 6 Size register read-write 0x0

0x190 TX_FQ_ADD_PT7
TX FIFO Queue 7 Current Address

Pointer register
read-only 0x0

0x194 TX_FQ_START_ADD7
TX FIFO Queue 7 Start Address

register
read-write 0x0

0x198 TX_FQ_SIZE7 TX FIFO Queue 7 Size register read-write 0x0

TX Priority Queue control and status registers

0x300 TX_PQ_STS0 TX Priority Queue Status register read-only 0x0

0x304 TX_PQ_STS1 TX Priority Queue Status register read-only 0x0

0x30C TX_PQ_CTRL0 TX Priority Queue Control register 0 read-write 0x0

0x310 TX_PQ_CTRL1 TX Priority Queue Control register 1 read-write 0x0

0x314 TX_PQ_CTRL2 TX Priority Queue Control register 2 read-write 0x0

0x318 TX_PQ_START_ADD TX Priority Queue Start Address read-write 0x0

RX FIFO Queues control and status registers

0x400 RX_DESC_ADD_PT RX descriptor Current Address Pointer read-only 0x0

0x404 RX_STATISTICS
Unsuccessful and Successful Message

Received Counter
read-write 0x0

0x408 RX_FQ_STS0 RX FIFO Queue Status register 0 read-only 0x0

0x40C RX_FQ_STS1 RX FIFO Queue Status register 1 read-only 0x0

0x410 RX_FQ_STS2 RX FIFO Queue Status register 2 read-only 0x0

0x414 RX_FQ_CTRL0 RX FIFO Queue Control register 0 read-write 0x0

0x418 RX_FQ_CTRL1 RX FIFO Queue Control register 1 read-write 0x0

0x41C RX_FQ_CTRL2 RX FIFO Queue Control register 2 read-write 0x0

0x420 RX_FQ_ADD_PT0
RX FIFO Queue 0 Current Address

Pointer
read-only 0x0

0x424 RX_FQ_START_ADD0
RX FIFO Queue 0 link list Start

Address
read-write 0x0

0x428 RX_FQ_SIZE0
RX FIFO Queue 0 link list and data

container Size
read-write 0x0

0x42C RX_FQ_DC_START_ADD0
RX FIFO Queue 0 Data Container Start

Address
read-write 0x0

0x430 RX_FQ_RD_ADD_PT0
RX FIFO Queue 0 Read Address

Pointer
read-write 0x0

0x438 RX_FQ_ADD_PT1
RX FIFO Queue 1 Current Address

Pointer
read-only 0x0

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

14 | 306

0x43C RX_FQ_START_ADD1
RX FIFO Queue 1 link list Start

Address
read-write 0x0

0x440 RX_FQ_SIZE1
RX FIFO Queue 1 link list and data

container Size
read-write 0x0

0x444 RX_FQ_DC_START_ADD1
RX FIFO Queue 1 Data Container Start

Address
read-write 0x0

0x448 RX_FQ_RD_ADD_PT1
RX FIFO Queue 1 Read Address

Pointer
read-write 0x0

0x450 RX_FQ_ADD_PT2
RX FIFO Queue 2 Current Address

Pointer
read-only 0x0

0x454 RX_FQ_START_ADD2
RX FIFO Queue 2 link list Start

Address
read-write 0x0

0x458 RX_FQ_SIZE2
RX FIFO Queue 2 link list and data

container Size
read-write 0x0

0x45C RX_FQ_DC_START_ADD2
RX FIFO Queue 2 Data Container Start

Address
read-write 0x0

0x460 RX_FQ_RD_ADD_PT2
RX FIFO Queue 2 Read Address

Pointer
read-write 0x0

0x468 RX_FQ_ADD_PT3
RX FIFO Queue 3 Current Address

Pointer
read-only 0x0

0x46C RX_FQ_START_ADD3
RX FIFO Queue 3 link list Start

Address
read-write 0x0

0x470 RX_FQ_SIZE3
RX FIFO Queue 3 link list and data

container Size
read-write 0x0

0x474 RX_FQ_DC_START_ADD3
RX FIFO Queue 3 Data Container Start

Address
read-write 0x0

0x478 RX_FQ_RD_ADD_PT3
RX FIFO Queue 3 Read Address

Pointer
read-write 0x0

0x480 RX_FQ_ADD_PT4
RX FIFO Queue 4 Current Address

Pointer
read-only 0x0

0x484 RX_FQ_START_ADD4
RX FIFO Queue 4 link list Start

Address
read-write 0x0

0x488 RX_FQ_SIZE4
RX FIFO Queue 4 link list and data

container Size
read-write 0x0

0x48C RX_FQ_DC_START_ADD4
RX FIFO Queue 4 Data Container Start

Address
read-write 0x0

0x490 RX_FQ_RD_ADD_PT4
RX FIFO Queue 4 Read Address

Pointer
read-write 0x0

0x498 RX_FQ_ADD_PT5
RX FIFO Queue 5 Current Address

Pointer
read-only 0x0

0x49C RX_FQ_START_ADD5
RX FIFO Queue 5 link list Start

Address
read-write 0x0

0x4A0 RX_FQ_SIZE5 RX FIFO Queue 5 link list and data read-write 0x0

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

15 | 306

container Size

0x4A4 RX_FQ_DC_START_ADD5
RX FIFO Queue 5 Data Container Start

Address
read-write 0x0

0x4A8 RX_FQ_RD_ADD_PT5
RX FIFO Queue 5 Read Address

Pointer
read-write 0x0

0x4B0 RX_FQ_ADD_PT6
RX FIFO Queue 6 Current Address

Pointer
read-only 0x0

0x4B4 RX_FQ_START_ADD6
RX FIFO Queue 6 link list Start

Address
read-write 0x0

0x4B8 RX_FQ_SIZE6
RX FIFO Queue 6 link list and data

container Size
read-write 0x0

0x4BC RX_FQ_DC_START_ADD6
RX FIFO Queue 6 Data Container Start

Address
read-write 0x0

0x4C0 RX_FQ_RD_ADD_PT6
RX FIFO Queue 6 Read Address

Pointer
read-write 0x0

0x4C8 RX_FQ_ADD_PT7
RX FIFO Queue 7 Current Address

Pointer
read-only 0x0

0x4CC RX_FQ_START_ADD7
RX FIFO Queue 7 link list Start

Address
read-write 0x0

0x4D0 RX_FQ_SIZE7
RX FIFO Queue 7 link list and data

container Size
read-write 0x0

0x4D4 RX_FQ_DC_START_ADD7
RX FIFO Queue 7 Data Container Start

Address
read-write 0x0

0x4D8 RX_FQ_RD_ADD_PT7
RX FIFO Queue 7 Read Address

Pointer
read-write 0x0

TX filter control registers

0x600 TX_FILTER_CTRL0 TX Filter Control register 0 read-write 0x0

0x604 TX_FILTER_CTRL1 TX Filter Control register 1 read-write 0x0

0x608 TX_FILTER_REFVAL0 TX Filter Reference Value register 0 read-write 0x0

0x60C TX_FILTER_REFVAL1 TX Filter Reference Value register 1 read-write 0x0

0x610 TX_FILTER_REFVAL2 TX Filter Reference Value register 2 read-write 0x0

0x614 TX_FILTER_REFVAL3 TX Filter Reference Value register 3 read-write 0x0

RX filter control registers

0x680 RX_FILTER_CTRL RX Filter Control register read-write 0x0

Interrupts control and status registers

0x700 TX_FQ_INT_STS
TX FIFO Queue Interrupt Status

register
read-write 0x0

0x704 RX_FQ_INT_STS
RX FIFO Queue Interrupt Status

register
read-write 0x0

0x708 TX_PQ_INT_STS0
TX Priority Queue Interrupt Status

register 0
read-write 0x0

0x70C TX_PQ_INT_STS1
TX Priority Queue Interrupt Status

register 1
read-write 0x0

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

16 | 306

0x710 STATS_INT_STS Statistics Interrupt Status register read-write 0x0

0x714 ERR_INT_STS Error Interrupt Status register read-write 0x0

0x718 SFTY_INT_STS Safety Interrupt Status register read-write 0x0

0x71C AXI_ERR_INFO AXI Error Information read-only 0x0

0x720 DESC_ERR_INFO0 Descriptor Error Information 0 read-only 0x0

0x724 DESC_ERR_INFO1 Descriptor Error Information 1 read-only 0x0

0x728 TX_FILTER_ERR_INFO TX Filter Error Information read-only 0x0

Integration/Debug control and status registers

0x800 DEBUG_TEST_CTRL Debug Control register read-write 0x0

0x804 INT_TEST0 Interrupt Test register 0 read-write 0x0

0x808 INT_TEST1 Interrupt Test register 1 read-write 0x0

0x810 TX_SCAN_FC TX-SCAN first candidates register read-only 0x0

0x814 TX_SCAN_BC TX-SCAN best candidates register read-only 0x0

0x818 TX_FQ_DESC_VALID
Valid TX FIFO Queue descriptors in

local memory
read-only 0x0

0x81C TX_PQ_DESC_VALID
Valid TX Priority Queue descriptors in

local memory
read-only 0x0

CRC control registers

0x880 CRC_CTRL CRC Control register write-only 0x0

0x884 CRC_REG CRC register read-write 0x0

1.4.4.2 Register Description

1.4.4.2.1 xcand_mh_creg

REGISTER DESCRIPTION: Global MH control and status registers

SIZE:

Register Base Address: 0x000

Register Address Range: 0x900

1.4.4.2.1.1 VERSION

Release Identification Register

This register is protected by a register bank CRC defined in CRC_REG register.

MH_1463

MH_1464

MH_1465

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

17 | 306

Address
Offset:

0x00000000 Initial Value: 0x05600000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit R
E
L

S
T
E
P

S
U

B
S

T
E
P

Y
E
A
R

M
O

N

D
A
Y

Mode R

R

R

R

R

R

Initial
Value 0

x0

0
x5

0
x6

0
x0

0
x0

0
x0

Bit 7:0 Define the day of the release using a binary coded decimal
representation (1 being the first day of the month and so forth). This
reset value is defined by the generic parameter
DESIGN_TIME_STAMP_G[7:0]. If the generic parameter
DESIGN_TIME_STAMP_G is not set, the default value is the one defined
here

Bit 15:8 Define the month of the release using a binary coded decimal
representation (1 being January and so forth). This reset value is defined
by the generic parameter DESIGN_TIME_STAMP_G[15:8]. If the generic
parameter DESIGN_TIME_STAMP_G is not set, the default value is the one
defined here

Bit 19:16 Define the year of the release using a binary coded decimal
representation (0 being 2020 and so forth…). This reset value is defined
by the generic parameter DESIGN_TIME_STAMP_G[19:16]. If the generic
parameter DESIGN_TIME_STAMP_G is not set, the default value is the one
defined here

Bit 23:20 Sub-Step value according to Step

Bit 27:24 Step value according to Release

Bit 31:28 Release value, used to identify the main release of the X_CAN

1.4.4.2.1.2 MH_CTRL

Message Handler Control register

MH_1471

MH_1470

MH_1469

MH_1468

MH_1467

MH_1466

MH_1472

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

18 | 306

Address
Offset:

0x00000004 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit

S
T
A
R

T

Mode

R
W

Initial
Value

0
x0

Bit 0 Before starting any RX/TX FIFO Queues or TX FIFO Queue slots the MH
must write 1 to this bit prior launching the PRT. At initial start, as long as
the PRT is not started, this bit can be set back to 0. When set to 1, the
global configuration registers are write-protected. As soon as the PRT is
started, this bit cannot be set to 0.

This bit can only be set to back to 0 if MH_STS.ENABLE = 0 and MH_STS.BUSY =0.
For more details on starting/stopping or restarting the MH, refer to the
Programming Guidelines chapter.

1.4.4.2.1.3 MH_CFG

Message Handler Configuration register

This register is only accessible in write mode if the MH is not started, see MH_CTRL.START = 0.

This register is protected by a register bank CRC defined in CRC_REG register.

Address
Offset:

0x00000008 Initial Value: 0x00000700

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit

IN
S

T
_N

U
M

M
A
X
_R

E
T
R

A
N

S

R
X
_C

O
N

T
_D

C

Mode

R
W

R
W

R
W

Initial
Value

0
x0

0
x7

0
x0

Bit 0 When set to 1, the Continuous mode is active. This mode provides the
option to have a linear and continuous memory organization of the RX
message data. Only one RX descriptor is used by RX message data and

MH_1473

MH_1474

MH_1477

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

19 | 306

one single data container is required. This bit field register is only
accessible in write mode if the MH is not started, see MH_CTRL.START =
0.

Bit 10:8 Maximum number of TX message re-transmissions. Different
configurations are possible: 0 -> no re-transmission; 1 to 6 -> 1 to 6 re-
transmissions; 7-> unlimited re-transmissions; This bit field register is
only accessible in write mode if the MH is not started, see
MH_CTRL.START = 0.

Bit 18:16 In case that a cluster of X_CAN is defined, this bit field is used as a
unique identifier per instance. This identifier is used by the MH to
determine if the TX/RX descriptors are fetched by the right instance, see
RX/TX description. This bit field register is only accessible in write mode
if the MH is not started, see MH_CTRL.START = 0.

1.4.4.2.1.4 MH_STS

Message Handler Status register

Address
Offset:

0x0000000c Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit

C
L
O

C
K

_A
C

T
IV

E

E
N

A
B

L
E

B
U

S
Y

Mode R
 R
 R

Initial
Value

0
x0

0
x0

0
x0

Bit 0 This bit is the general busy flag, it is an ORED(RX/TX FIFO Queues and
TX Priority Queue slots busy flags)

Bit 4 Value of the ENABLE signal driven by the PRT. The PRT signalizes via
ENABLE whether it is active (ENABLE = 1) and requires message handling
or not (ENABLE = 0).

Bit 8 Status of MH core clock: 0 = clock off, 1 = clock on.

1.4.4.2.1.5 MH_SFTY_CFG

Message Handler Safety Configuration register

This register is only accessible in write mode if the MH is not started, see MH_CTRL.START = 0.

This register is protected by a register bank CRC defined in CRC_REG register.

MH_1476

MH_1475

MH_1479

MH_1481

MH_2659

MH_1480

MH_1482

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

20 | 306

Address
Offset:

0x00000010 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit

P
R

E
S

C
A
L
E
R

P
R

T
_T

O
_V

A
L

M
E
M

_T
O

_V
A
L

D
M

A
_T

O
_V

A
L

Mode R
W

R
W

R
W

R
W

Initial
Value 0

x0

0
x0

0
x0

0
x0

Bit 7:0 This value is used by the watchdog timer for the DMA_AXI interface and
defines the maximum number of timer ticks until a read or write access
has to be completed. This value must be configured according to the
maximum system latency, expected on the DMA_AXI interface. If this
value is set to 0 and MH_SFTY_CTRL.DMA_TO_EN = 1 then the
DMA_TO_ERR interrupt is triggered right away when accessing the
S_MEM. This bit field register is only accessible in write mode if the MH
is not started, see MH_CTRL.START = 0.

Bit 15:8 This value is used by the watchdog timer for the MEM_AXI interface and
defines the maximum number of timer ticks until a read or write access
has to be completed. This value must be configured to the expected
maximum latency on the MEM_AXI interface. If this value is set to 0 and
MH_SFTY_CTRL.MEM_TO_EN = 1 then the MEM_TO_ERR interrupt is
triggered right away when accessing the L_MEM. This bit field register is
only accessible in write mode if the MH is not started, see
MH_CTRL.START = 0.

Bit 29:16 This value is used by the watchdog timers for the internal RX_MSG and
TX_MSG interfaces. It defines the maximum number of timer ticks until a
message has to be transferred from PRT to MH respective MH to PRT.
The value must be configured according to the CAN frame which requires
the longest time to be transported on the CAN bus. If this value is set to
0 and MH_SFTY_CTRL.PRT_TO_EN = 1 then the DP_TO_ERR interrupt is
triggered right away at the beginning of a RX message or when starting a
TX message. This bit field register is only accessible in write mode if the
MH is not started, see MH_CTRL.START = 0.

Bit 31:30 Prescaler used to generate the timer ticks for the watchdogs. This bit
field register is only accessible in write mode if the MH is not started,
see MH_CTRL.START = 0. According to the value a different clock ratio
can be selected:

MH_1486

MH_1485

MH_1484

MH_1483

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

21 | 306

0: clk divided by 32

1: clk divided by 64

2: clk divided by 128

3: clk divided by 512

1.4.4.2.1.6 MH_SFTY_CTRL

Message Handler Safety Control register

This register is only accessible in write mode if the MH is not started, see MH_CTRL.START = 0.

This register is protected by a register bank CRC defined in CRC_REG register.

Address
Offset:

0x00000014 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit

P
R

T
_T

O
_E

N

M
E
M

_T
O

_E
N

D
M

A
_T

O
_E

N

D
M

A
_C

H
_C

H
K

_E
N

R
X
_A

P
_P

A
R

IT
Y
_E

N

T
X
_A

P
_P

A
R

IT
Y
_E

N

T
X
_D

P
_P

A
R

IT
Y
_E

N

R
X
_D

P
_P

A
R

IT
Y
_E

N

M
E
M

_P
R

O
T
_E

N

R
X
_D

E
S

C
_C

R
C

_E
N

T
X
_D

E
S

C
_C

R
C

_E
N

Mode

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

Initial
Value

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

Bit 0 When set to 1, the CRC check for the TX descriptors is enabled. This bit
field register is only accessible in write mode if the MH is not started,
see MH_CTRL.START = 0.

Bit 1 When set to 1, the CRC check for the RX descriptors is enabled. This bit
field register is only accessible in write mode if the MH is not started,
see MH_CTRL.START = 0.

Bit 2 When set to 1, the sfty_err signal from the local memory interface is
checked. This bit field register is only accessible in write mode if the MH
is not started, see MH_CTRL.START = 0.

Bit 3 When set to 1, the data path parity check performed on the RX path is
enabled. This bit field register is only accessible in write mode if the MH
is not started, see MH_CTRL.START = 0.

Bit 4 When set to 1, the data path parity check performed on the TX path is
enabled. This bit field register is only accessible in write mode if the MH
is not started, see MH_CTRL.START = 0.

Bit 5 When set to 1, the address pointer parity check on the TX path is
enabled. This bit field register is only accessible in write mode if the MH
is not started, see MH_CTRL.START = 0.

MH_1487

MH_1498

MH_1497

MH_1496

MH_1495

MH_1494

MH_1493

MH_1492

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

22 | 306

Bit 6 When set to 1, the address pointer parity check on the RX path is
enabled. This bit field register is only accessible in write mode if the MH
is not started, see MH_CTRL.START = 0.

Bit 7 When set to 1, the read/write DMA channels routing is checked. This bit
field register is only accessible in write mode if the MH is not started,
see MH_CTRL.START = 0.

Bit 8 When set to 1, the watchdog for the DMA_AXI interface is enabled,
otherwise disabled. This bit field register is only accessible in write
mode if the MH is not started, see MH_CTRL.START = 0.

Bit 9 When set to 1, the watchdog for the MEM_AXI interface is enabled,
otherwise disabled. This bit field register is only accessible in write
mode if the MH is not started, see MH_CTRL.START = 0.

Bit 10 When set to 1, the watchdogs for the internal RX_MSG and TX_MSG
interfaces are enabled, otherwise disabled. This bit field register is only
accessible in write mode if the MH is not started, see MH_CTRL.START =
0.

1.4.4.2.1.7 RX_FILTER_MEM_ADD

RX Filter Base Address register

This register is only accessible in write mode if the MH is not started, see MH_CTRL.START = 0.

This register is protected by a register bank CRC defined in CRC_REG register.

Address
Offset:

0x00000018 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit

B
A
S

E
_A

D
D

R

Mode

R
W

Initial
Value

0
x0

Bit 15:0 Define the base address where the RX filter elements are defined in
L_MEM (up to 64Kbytes can be addressed). The BASE_ADDR[1:0] bits are
always assumed to be 0b00 whatever the value written. This address
value must always be word aligned (32bit). This bit field register is only
accessible in write mode if the MH is not started, see MH_CTRL.START =
0.

MH_1491

MH_1490

MH_1489

MH_1488

MH_1499

MH_1500

MH_1501

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

23 | 306

1.4.4.2.1.8 TX_DESC_MEM_ADD

TX Descriptor Base Address register

This register is only accessible in write mode if the MH is not started, see MH_CTRL.START = 0.

This register is protected by a register bank CRC defined in CRC_REG register.

Address
Offset:

0x0000001c Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit
P

Q
_B

A
S

E
_A

D
D

R

F
Q

_B
A
S

E
_A

D
D

R

Mode R
W

R
W

Initial
Value 0

x0

0
x0

Bit 15:0 Define the base address where the TX FIFO Queue descriptors are stored
in L_MEM (up to 64Kbytes can be addressed). The FQ_BASE_ADDR[1:0]
bits are always assumed to be 0b00 whatever the value written. This
address value must always be word aligned (32bit). This bit field register
is only accessible in write mode if the MH is not started, see
MH_CTRL.START = 0.

Bit 31:16 Define the base address where the TX Priority Queue descriptors are
stored in L_MEM (up to 64Kbytes can be addressed). The
PQ_BASE_ADDR[1:0] bits are always assumed to be 0b00 whatever the
value written. This address value must always be word aligned (32bit).
This bit field register is only accessible in write mode if the MH is not
started, see MH_CTRL.START = 0.

1.4.4.2.1.9 AXI_ADD_EXT

AXI address extension register

This register is only accessible in write mode if the MH is not started, see MH_CTRL.START = 0.

This register is protected by a register bank CRC defined in CRC_REG register.

MH_1503

MH_1502

MH_1504

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

24 | 306

Address
Offset:

0x00000020 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit V
A
L

Mode R
W

Initial
Value 0

x0

Bit 31:0 Define the MSB of the read/write AXI address bus used on the DMA_AXI
interface. If not required, leave the default value and do not connect the
upper part of the DMA_AXI read/write address bus. This bit field register
is only accessible in write mode if the MH is not started, see
MH_CTRL.START = 0.

1.4.4.2.1.10 AXI_PARAMS

AXI parameter register

This register is only accessible in write mode if the MH is not started, see MH_CTRL.START = 0.

This register is protected by a register bank CRC defined in CRC_REG register.

Address
Offset:

0x00000024 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit

A
W

_M
A
X
_P

E
N

D

A
R

_M
A
X
_P

E
N

D

Mode

R
W

R
W

Initial
Value

0
x0

0
x0

Bit 1:0 AR_MAX_PEND[1:0] defines the maximum read pending transactions on
DMA_AXI interface: 0 -> no read transfer; 1 -> 1 outstanding read
transaction; 2 -> 2 outstanding read transactions, 3 -> 3 outstanding read
transactions. This bit field register is only accessible in write mode if the
MH is not started, see MH_CTRL.START = 0.

MH_1505

MH_1506

MH_1508

MH_1507

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

25 | 306

Bit 5:4 AW_MAX_PEND[1:0] defines the maximum write pending transactions on
DMA_AXI interface: 0 -> no write transfer; 1 -> 1 outstanding write
transaction allowed; 2 -> 2 outstanding write transactions, 3 -> 3
outstanding write transactions. This bit field register is only accessible in
write mode if the MH is not started, see MH_CTRL.START = 0.

1.4.4.2.1.11 MH_LOCK

Message Handler Lock register

Address
Offset:

0x00000028 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit

T
M

K

U
L
K

Mode R
W

R
W

Initial
Value 0

x0

0
x0

Bit 15:0 Unlock key register. Two consecutive writes to this bit field, starting with
0x1234 and 0x04321, must be done before writing to a register being
locked.

Bit 31:16 Test mode key register. Two consecutive writes to this bit field, starting
with 0x6789 and 0x9876, must be done before writing to the
DEBUG_TEST_CTRL register.

1.4.4.2.1.12 TX_DESC_ADD_PT

TX descriptor current address pointer register

MH_1509

MH_1511

MH_1510

MH_2253

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

26 | 306

Address
Offset:

0x00000100 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit V
A
L

Mode R

Initial
Value 0

x0

Bit 31:0 Address used to fetch a TX descriptor for the TX FIFO Queues or TX
Priority Queue slots. It could be for several reasons: a new message
needs to be fetched from a TX FIFO Queue or a new message is defined
in a TX Priority Queue slot. This address value is always word aligned
(32bit).

1.4.4.2.1.13 TX_STATISTICS

TX Message Counter register

Address
Offset:

0x00000104 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit

U
N

S
U

C
C

S
U

C
C

Mode

R
W

R
W

Initial
Value

0
x0

0
x0

Bit 11:0 Counter incremented with every successful transmission of a CAN
message to the CAN bus. The counter wraps automatically to 0 and can
be cleared when writing 0 to the bit field. A STATS_IRQ interrupt is
generated when the counter wraps.

Bit 27:16 Counter incremented with every unsuccessful transmission of a CAN
message to the CAN bus. The counter wraps automatically to 0 and can
be cleared when writing 0 to the bit field. A STATS_IRQ interrupt is
generated when the counter wraps.

MH_2254

MH_2255

MH_2257

MH_2256

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

27 | 306

1.4.4.2.1.14 TX_FQ_STS0

TX FIFO Queue Status register

Address
Offset:

0x00000108 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit

S
T
O

P

B
U

S
Y

Mode R
 R

Initial
Value

0
x0

0
x0

Bit 7:0 When BUSY[n] = 1 the TX FIFO Queue n is active, this means the FIFO
Queue is started and running (TX message defined in the TX FIFO Queue
n can be processed). When the BUSY[n] = 0, the TX FIFO Queue n is
stopped and would require a write to the TX_FQ_CTRL0.START[n] to
make it active again. A TX FIFO Queue can go inactive if the END bit in
the last TX descriptor of a TX message is set. In this case the, the
BUSY[n] = 0 can occur only if the TX header descriptor of this last
message has been acknowledged for the TX FIFO Queue n. When the TX
FIFO Queue n is aborted, the BUSY[n] flag is set to 0 only when no
acknowledge is pending.

Bit 23:16 When STOP[n] = 1 the TX FIFO Queue n is on hold, this means the FIFO
Queue is started and running but waits for the SW to keep going. The
STOP[n] can be set only if the BUSY[n] = 1. Several root causes may lead
to this state: an error is detected, or a TX descriptor is not valid. To
identify the potential issues, refer to the TX_FQ_STS1 register. In order to
keep going with the TX FIFO Queue n, a write to the
TX_FQ_CTRL0.START[n] is required. When BUSY[n] = 0, this bit is
automatically set to 0

1.4.4.2.1.15 TX_FQ_STS1

TX FIFO Queue Status register

MH_2258

MH_2260

MH_2259

MH_2261

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

28 | 306

Address
Offset:

0x0000010c Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit

E
R

R
O

R

U
N

V
A
L
ID

Mode R
 R

Initial
Value

0
x0

0
x0

Bit 7:0 When UNVALID[n] = 1 the TX FIFO Queue n is on hold due to an TX
descriptor with VALID=0 was loaded.

Bit 23:16 When ERROR[n] = 1 the TX FIFO Queue n is on hold due to an
inconsistent TX descriptor was loaded, see chapter Descriptor
Protection.

1.4.4.2.1.16 TX_FQ_CTRL0

TX FIFO Queue Control register 0

Address
Offset:

0x00000110 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit

S
T
A
R

T

Mode

R
W

Initial
Value

0
x0

Bit 7:0 When writing a 1 to the START[n], the TX FIFO Queue n is started. This
bit is autocleared. Once started, the TX_FQ_STS0.BUSY[n] is set to 1.
The MH must be started prior to any TX FIFO Queue start (MH_STS.BUSY
set to 1). A TX FIFO Queue n can only be started if
TX_FQ_CTRL2.ENABLE[n] is set to 1 and in order to avoid a dead lock
situation with the PRT, the ENABLE signal from the PRT is high.

MH_2263

MH_2262

MH_2264

MH_2265

MH_2266

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

29 | 306

1.4.4.2.1.17 TX_FQ_CTRL1

TX FIFO Queue Control register 1

This register is only accessible in write mode if the unlock key sequence has been performed prior to

write

Address
Offset:

0x00000114 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit

A
B

O
R

T

Mode

R
W

Initial
Value

0
x0

Bit 7:0 When ABORT[n] is set to 1, the TX FIFO Queue n is aborted. Once set to
1, the MH will abort all pending transaction related to the TX FIFO Queue
n whenever required. This bit must be set back to 0 only when the TX
FIFO Queue n is inactive, TX_FQ_STS0.BUSY[n] = 0. This bit field register
is only accessible in write mode if the unlock key sequence has been
performed prior to write.

1.4.4.2.1.18 TX_FQ_CTRL2

TX FIFO Queue Control register 2

Address
Offset:

0x00000118 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit

E
N

A
B

L
E

Mode

R
W

Initial
Value

0
x0

Bit 7:0 When ENABLE[n] is set to 1, the TX FIFO Queue n is enabled. A TX FIFO
Queue cannot be started if it is not enabled. Aborting a not started TX
FIFO Queue has no effect.

MH_2267

MH_2268

MH_2269

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

30 | 306

1.4.4.2.1.19 TX_FQ_ADD_PT0

TX FIFO Queue 0 Current Address Pointer register

Address
Offset:

0x00000120 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit V
A
L

Mode R

Initial
Value 0

x0

Bit 31:0 Provide the header descriptor address of the TX message being in used
by the arbiter for the TX FIFO Queue. To follow TX descriptors over time
while running TX FIFO Queues, refer to the TX_DESC_ADD_PT register.
This address value is always word aligned (32bit).

1.4.4.2.1.20 TX_FQ_START_ADD0

TX FIFO Queue 0 Start Address register

This register is only accessible in write mode if the TX FIFO Queue 0 is not busy, see BUSY flag in

TX_FQ_STS0 register.

This register is protected by a register bank CRC defined in CRC_REG register.

Address
Offset:

0x00000124 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit V
A
L

Mode R
W

Initial
Value 0

x0

Bit 31:0 Define the start address of the TX FIFO Queue link list descriptor in the
system memory. The VAL[1:0] bits are always assumed to be 0b00
whatever the value written. This address value must always be word

MH_2270

MH_2271

MH_2272

MH_2273

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

31 | 306

aligned (32bit). This bit field register is only accessible in write mode if
the TX FIFO Queue 0 is not busy, see BUSY flag in TX_FQ_STS0 register.

1.4.4.2.1.21 TX_FQ_SIZE0

TX FIFO Queue 0 Size register

This register is only accessible in write mode if the TX FIFO Queue 0 is not busy, see BUSY flag in

TX_FQ_STS0 register.

This register is protected by a register bank CRC defined in CRC_REG register.

Address
Offset:

0x00000128 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit

M
A
X
_D

E
S

C

Mode

R
W

Initial
Value

0
x0

Bit 9:0 Define the maximum number of TX descriptors in the TX FIFO Queue link
list descriptors. It is important to note that MAX_DESC = 0 does not
prevent the TX FIFO Queue to be enabled and started. An active and
running TX FIFO Queue with MAX_DESC = 0 is not allowed and will result
in a DESC_ERR interrupt if no TX descriptor is defined. The memory size
to allocate is MAX_DESC * 32bytes for MAX_DESC > = 1. This bit field
register is only accessible in write mode if the TX FIFO Queue 0 is not
busy, see BUSY flag in TX_FQ_STS0 register.

1.4.4.2.1.22 TX_FQ_ADD_PT1

TX FIFO Queue 1 Current Address Pointer register

MH_2274

MH_2275

MH_2276

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

32 | 306

Address
Offset:

0x00000130 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit V
A
L

Mode R

Initial
Value 0

x0

Bit 31:0 Provide the header descriptor address of the TX message being in used
by the arbiter for the TX FIFO Queue. To follow TX descriptors over time
while running TX FIFO Queues, refer to the TX_DESC_ADD_PT register.
This address value is always word aligned (32bit).

1.4.4.2.1.23 TX_FQ_START_ADD1

TX FIFO Queue 1 Start Address register

This register is only accessible in write mode if the TX FIFO Queue 1 is not busy, see BUSY flag in

TX_FQ_STS0 register.

This register is protected by a register bank CRC defined in CRC_REG register.

Address
Offset:

0x00000134 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit V
A
L

Mode R
W

Initial
Value 0

x0

Bit 31:0 Define the start address of the TX FIFO Queue link list descriptor in the
system memory. The VAL[1:0] bits are always assumed to be 0b00
whatever the value written. This address value must always be word
aligned (32bit). This bit field register is only accessible in write mode if
the TX FIFO Queue 1 is not busy, see BUSY flag in TX_FQ_STS0 register.

MH_2277

MH_2278

MH_2279

MH_2280

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

33 | 306

1.4.4.2.1.24 TX_FQ_SIZE1

TX FIFO Queue 1 Size register

This register is only accessible in write mode if the TX FIFO Queue 1 is not busy, see BUSY flag in

TX_FQ_STS0 register.

This register is protected by a register bank CRC defined in CRC_REG register.

Address
Offset:

0x00000138 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit

M
A
X
_D

E
S

C

Mode

R
W

Initial
Value

0
x0

Bit 9:0 Define the maximum number of TX descriptors in the TX FIFO Queue link
list descriptors. It is important to note that MAX_DESC = 0 does not
prevent the TX FIFO Queue to be enabled and started. An active and
running TX FIFO Queue with MAX_DESC = 0 is not allowed and will result
in a DESC_ERR interrupt if no TX descriptor is defined. The memory size
to allocate is MAX_DESC * 32bytes for MAX_DESC > = 1. This bit field
register is only accessible in write mode if the TX FIFO Queue 1 is not
busy, see BUSY flag in TX_FQ_STS0 register.

1.4.4.2.1.25 TX_FQ_ADD_PT2

TX FIFO Queue 2 Current Address Pointer register

MH_2281

MH_2282

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

34 | 306

Address
Offset:

0x00000140 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit V
A
L

Mode R

Initial
Value 0

x0

Bit 31:0 Provide the header descriptor address of the TX message being in used
by the arbiter for the TX FIFO Queue. To follow TX descriptors over time
while running TX FIFO Queues, refer to the TX_DESC_ADD_PT register.
This address value is always word aligned (32bit).

1.4.4.2.1.26 TX_FQ_START_ADD2

TX FIFO Queue 2 Start Address register

This register is only accessible in write mode if the TX FIFO Queue 2 is not busy, see BUSY flag in

TX_FQ_STS0 register.

This register is protected by a register bank CRC defined in CRC_REG register.

Address
Offset:

0x00000144 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit V
A
L

Mode R
W

Initial
Value 0

x0

Bit 31:0 Define the start address of the TX FIFO Queue link list descriptor in the
system memory. The VAL[1:0] bits are always assumed to be 0b00
whatever the value written. This address value must always be word
aligned (32bit). This bit field register is only accessible in write mode if
the TX FIFO Queue 2 is not busy, see BUSY flag in TX_FQ_STS0 register.

MH_2283

MH_2284

MH_2285

MH_2286

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

35 | 306

1.4.4.2.1.27 TX_FQ_SIZE2

TX FIFO Queue 2 Size register

This register is only accessible in write mode if the TX FIFO Queue 2 is not busy, see BUSY flag in

TX_FQ_STS0 register.

This register is protected by a register bank CRC defined in CRC_REG register.

Address
Offset:

0x00000148 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit

M
A
X
_D

E
S

C

Mode

R
W

Initial
Value

0
x0

Bit 9:0 Define the maximum number of TX descriptors in the TX FIFO Queue link
list descriptors. It is important to note that MAX_DESC = 0 does not
prevent the TX FIFO Queue to be enabled and started. An active and
running TX FIFO Queue with MAX_DESC = 0 is not allowed and will result
in a DESC_ERR interrupt if no TX descriptor is defined. The memory size
to allocate is MAX_DESC * 32bytes for MAX_DESC > = 1. This bit field
register is only accessible in write mode if the TX FIFO Queue 2 is not
busy, see BUSY flag in TX_FQ_STS0 register.

1.4.4.2.1.28 TX_FQ_ADD_PT3

TX FIFO Queue 3 Current Address Pointer register

MH_2287

MH_2288

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

36 | 306

Address
Offset:

0x00000150 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit V
A
L

Mode R

Initial
Value 0

x0

Bit 31:0 Provide the header descriptor address of the TX message being in used
by the arbiter for the TX FIFO Queue. To follow TX descriptors over time
while running TX FIFO Queues, refer to the TX_DESC_ADD_PT register.
This address value is always word aligned (32bit).

1.4.4.2.1.29 TX_FQ_START_ADD3

TX FIFO Queue 3 Start Address register

This register is only accessible in write mode if the TX FIFO Queue 3 is not busy, see BUSY flag in

TX_FQ_STS0 register.

This register is protected by a register bank CRC defined in CRC_REG register.

Address
Offset:

0x00000154 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit V
A
L

Mode R
W

Initial
Value 0

x0

Bit 31:0 Define the start address of the TX FIFO Queue link list descriptor in the
system memory. The VAL[1:0] bits are always assumed to be 0b00
whatever the value written. This address value must always be word
aligned (32bit). This bit field register is only accessible in write mode if
the TX FIFO Queue 3 is not busy, see BUSY flag in TX_FQ_STS0 register.

MH_2289

MH_2290

MH_2291

MH_2292

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

37 | 306

1.4.4.2.1.30 TX_FQ_SIZE3

TX FIFO Queue 3 Size register

This register is only accessible in write mode if the TX FIFO Queue 3 is not busy, see BUSY flag in

TX_FQ_STS0 register.

This register is protected by a register bank CRC defined in CRC_REG register.

Address
Offset:

0x00000158 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit

M
A
X
_D

E
S

C

Mode

R
W

Initial
Value

0
x0

Bit 9:0 Define the maximum number of TX descriptors in the TX FIFO Queue link
list descriptors. It is important to note that MAX_DESC = 0 does not
prevent the TX FIFO Queue to be enabled and started. An active and
running TX FIFO Queue with MAX_DESC = 0 is not allowed and will result
in a DESC_ERR interrupt if no TX descriptor is defined. The memory size
to allocate is MAX_DESC * 32bytes for MAX_DESC > = 1. This bit field
register is only accessible in write mode if the TX FIFO Queue 3 is not
busy, see BUSY flag in TX_FQ_STS0 register.

1.4.4.2.1.31 TX_FQ_ADD_PT4

TX FIFO Queue 4 Current Address Pointer register

MH_2293

MH_2294

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

38 | 306

Address
Offset:

0x00000160 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit V
A
L

Mode R

Initial
Value 0

x0

Bit 31:0 Provide the header descriptor address of the TX message being in used
by the arbiter for the TX FIFO Queue. To follow TX descriptors over time
while running TX FIFO Queues, refer to the TX_DESC_ADD_PT register.
This address value is always word aligned (32bit).

1.4.4.2.1.32 TX_FQ_START_ADD4

TX FIFO Queue 4 Start Address register

This register is only accessible in write mode if the TX FIFO Queue 4 is not busy, see BUSY flag in

TX_FQ_STS0 register.

This register is protected by a register bank CRC defined in CRC_REG register.

Address
Offset:

0x00000164 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit V
A
L

Mode R
W

Initial
Value 0

x0

Bit 31:0 Define the start address of the TX FIFO Queue link list descriptor in the
system memory. The VAL[1:0] bits are always assumed to be 0b00
whatever the value written. This address value must always be word
aligned (32bit). This bit field register is only accessible in write mode if
the TX FIFO Queue 4 is not busy, see BUSY flag in TX_FQ_STS0 register.

MH_2295

MH_2296

MH_2297

MH_2298

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

39 | 306

1.4.4.2.1.33 TX_FQ_SIZE4

TX FIFO Queue 4 Size register

This register is only accessible in write mode if the TX FIFO Queue 4 is not busy, see BUSY flag in

TX_FQ_STS0 register.

This register is protected by a register bank CRC defined in CRC_REG register.

Address
Offset:

0x00000168 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit

M
A
X
_D

E
S

C

Mode

R
W

Initial
Value

0
x0

Bit 9:0 Define the maximum number of TX descriptors in the TX FIFO Queue link
list descriptors. It is important to note that MAX_DESC = 0 does not
prevent the TX FIFO Queue to be enabled and started. An active and
running TX FIFO Queue with MAX_DESC = 0 is not allowed and will result
in a DESC_ERR interrupt if no TX descriptor is defined. The memory size
to allocate is MAX_DESC * 32bytes for MAX_DESC > = 1. This bit field
register is only accessible in write mode if the TX FIFO Queue 4 is not
busy, see BUSY flag in TX_FQ_STS0 register.

1.4.4.2.1.34 TX_FQ_ADD_PT5

TX FIFO Queue 5 Current Address Pointer register

MH_2299

MH_2300

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

40 | 306

Address
Offset:

0x00000170 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit V
A
L

Mode R

Initial
Value 0

x0

Bit 31:0 Provide the header descriptor address of the TX message being in used
by the arbiter for the TX FIFO Queue. To follow TX descriptors over time
while running TX FIFO Queues, refer to the TX_DESC_ADD_PT register.
This address value is always word aligned (32bit).

1.4.4.2.1.35 TX_FQ_START_ADD5

TX FIFO Queue 5 Start Address register

This register is only accessible in write mode if the TX FIFO Queue 5 is not busy, see BUSY flag in

TX_FQ_STS0 register.

This register is protected by a register bank CRC defined in CRC_REG register.

Address
Offset:

0x00000174 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit V
A
L

Mode R
W

Initial
Value 0

x0

Bit 31:0 Define the start address of the TX FIFO Queue link list descriptor in the
system memory. The VAL[1:0] bits are always assumed to be 0b00
whatever the value written. This address value must always be word
aligned (32bit). This bit field register is only accessible in write mode if
the TX FIFO Queue 5 is not busy, see BUSY flag in TX_FQ_STS0 register.

MH_2301

MH_2302

MH_2303

MH_2304

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

41 | 306

1.4.4.2.1.36 TX_FQ_SIZE5

TX FIFO Queue 5 Size register

This register is only accessible in write mode if the TX FIFO Queue 5 is not busy, see BUSY flag in

TX_FQ_STS0 register.

This register is protected by a register bank CRC defined in CRC_REG register.

Address
Offset:

0x00000178 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit

M
A
X
_D

E
S

C

Mode

R
W

Initial
Value

0
x0

Bit 9:0 Define the maximum number of TX descriptors in the TX FIFO Queue link
list descriptors. It is important to note that MAX_DESC = 0 does not
prevent the TX FIFO Queue to be enabled and started. An active and
running TX FIFO Queue with MAX_DESC = 0 is not allowed and will result
in a DESC_ERR interrupt if no TX descriptor is defined. The memory size
to allocate is MAX_DESC * 32bytes for MAX_DESC > = 1. This bit field
register is only accessible in write mode if the TX FIFO Queue 5 is not
busy, see BUSY flag in TX_FQ_STS0 register.

1.4.4.2.1.37 TX_FQ_ADD_PT6

TX FIFO Queue 6 Current Address Pointer register

MH_2305

MH_2306

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

42 | 306

Address
Offset:

0x00000180 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit V
A
L

Mode R

Initial
Value 0

x0

Bit 31:0 Provide the header descriptor address of the TX message being in used
by the arbiter for the TX FIFO Queue. To follow TX descriptors over time
while running TX FIFO Queues, refer to the TX_DESC_ADD_PT register.
This address value is always word aligned (32bit).

1.4.4.2.1.38 TX_FQ_START_ADD6

TX FIFO Queue 6 Start Address register

This register is only accessible in write mode if the TX FIFO Queue 6 is not busy, see BUSY flag in

TX_FQ_STS0 register.

This register is protected by a register bank CRC defined in CRC_REG register.

Address
Offset:

0x00000184 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit V
A
L

Mode R
W

Initial
Value 0

x0

Bit 31:0 Define the start address of the TX FIFO Queue link list descriptor in the
system memory. The VAL[1:0] bits are always assumed to be 0b00
whatever the value written. This address value must always be word
aligned (32bit). This bit field register is only accessible in write mode if
the TX FIFO Queue 6 is not busy, see BUSY flag in TX_FQ_STS0 register.

MH_2307

MH_2308

MH_2309

MH_2310

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

43 | 306

1.4.4.2.1.39 TX_FQ_SIZE6

TX FIFO Queue 6 Size register

This register is only accessible in write mode if the TX FIFO Queue 6 is not busy, see BUSY flag in

TX_FQ_STS0 register.

This register is protected by a register bank CRC defined in CRC_REG register.

Address
Offset:

0x00000188 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit

M
A
X
_D

E
S

C

Mode

R
W

Initial
Value

0
x0

Bit 9:0 Define the maximum number of TX descriptors in the TX FIFO Queue link
list descriptors. It is important to note that MAX_DESC = 0 does not
prevent the TX FIFO Queue to be enabled and started. An active and
running TX FIFO Queue with MAX_DESC = 0 is not allowed and will result
in a DESC_ERR interrupt if no TX descriptor is defined. The memory size
to allocate is MAX_DESC * 32bytes for MAX_DESC > = 1. This bit field
register is only accessible in write mode if the TX FIFO Queue 6 is not
busy, see BUSY flag in TX_FQ_STS0 register.

1.4.4.2.1.40 TX_FQ_ADD_PT7

TX FIFO Queue 7 Current Address Pointer register

MH_2311

MH_2312

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

44 | 306

Address
Offset:

0x00000190 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit V
A
L

Mode R

Initial
Value 0

x0

Bit 31:0 Provide the header descriptor address of the TX message being in used
by the arbiter for the TX FIFO Queue. To follow TX descriptors over time
while running TX FIFO Queues, refer to the TX_DESC_ADD_PT register.
This address value is always word aligned (32bit).

1.4.4.2.1.41 TX_FQ_START_ADD7

TX FIFO Queue 7 Start Address register

This register is only accessible in write mode if the TX FIFO Queue 7 is not busy, see BUSY flag in

TX_FQ_STS0 register.

This register is protected by a register bank CRC defined in CRC_REG register.

Address
Offset:

0x00000194 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit V
A
L

Mode R
W

Initial
Value 0

x0

Bit 31:0 Define the start address of the TX FIFO Queue link list descriptor in the
system memory. The VAL[1:0] bits are always assumed to be 0b00
whatever the value written. This address value must always be word
aligned (32bit). This bit field register is only accessible in write mode if
the TX FIFO Queue 7 is not busy, see BUSY flag in TX_FQ_STS0 register.

MH_2313

MH_2314

MH_2315

MH_2316

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

45 | 306

1.4.4.2.1.42 TX_FQ_SIZE7

TX FIFO Queue 7 Size register

This register is only accessible in write mode if the TX FIFO Queue 7 is not busy, see BUSY flag in

TX_FQ_STS0 register.

This register is protected by a register bank CRC defined in CRC_REG register.

Address
Offset:

0x00000198 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit

M
A
X
_D

E
S

C

Mode

R
W

Initial
Value

0
x0

Bit 9:0 Define the maximum number of TX descriptors in the TX FIFO Queue link
list descriptors. It is important to note that MAX_DESC = 0 does not
prevent the TX FIFO Queue to be enabled and started. An active and
running TX FIFO Queue with MAX_DESC = 0 is not allowed and will result
in a DESC_ERR interrupt if no TX descriptor is defined. The memory size
to allocate is MAX_DESC * 32bytes for MAX_DESC > = 1. This bit field
register is only accessible in write mode if the TX FIFO Queue 7 is not
busy, see BUSY flag in TX_FQ_STS0 register.

1.4.4.2.1.43 TX_PQ_STS0

TX Priority Queue Status register

MH_2317

MH_2318

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

46 | 306

Address
Offset:

0x00000300 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit

B
U

S
Y

Mode R

Initial
Value 0

x0

Bit 31:0 When BUSY[n] = 1, the TX Priority Queue slot n is busy, which means
that the TX descriptor in the slot n is being loaded in L_MEM and
considered by the TX-Scan. As long as this bit remains high, the message
attached to the slot n has not been sent yet. The BUSY[n] = 0 can occur
only if the TX header descriptor of the slot n has been acknowledged.

1.4.4.2.1.44 TX_PQ_STS1

TX Priority Queue Status register

Address
Offset:

0x00000304 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit

S
E
N

T

Mode R

Initial
Value 0

x0

Bit 31:0 When SENT[n] = 1 the TX message assigned to the TX Priority Queue slot
n has been transmitted and the TX descriptor attached to the slot n is
acknowledged. This bit will be cleared once a new start on this slot will
occur.

1.4.4.2.1.45 TX_PQ_CTRL0

TX Priority Queue Control register 0

MH_2319

MH_2320

MH_2321

MH_2322

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

47 | 306

Address
Offset:

0x0000030c Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit

S
T
A
R

T

Mode R
W

Initial
Value 0

x0

Bit 31:0 When writing a 1 to the START[n], the TX Priority Queue slot n is started
and running. This bit is autocleared and once started, the
TX_PQ_STS0.BUSY[n] is set to 1. The MH must be started prior to any TX
Priority Queue slot start (MH_STS.BUSY set to 1). A TX Priority Queue
slot n can only be started if TX_PQ_CTRL2.ENABLE[n] is set to 1 and in
order to avoid a dead lock situation with the PRT, the ENABLE signal
from the PRT is high.

1.4.4.2.1.46 TX_PQ_CTRL1

TX Priority Queue Control register 1

This register is only accessible in write mode if the unlock key sequence has been performed prior to

write

Address
Offset:

0x00000310 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit

A
B

O
R

T

Mode R
W

Initial
Value 0

x0

Bit 31:0 When ABORT[n] is set to 1, the TX Priority Queue slot n is aborted. This
bit must be set back to 0 only when the TX Priority Queue slot n is
inactive, TX_FQ_STS0.BUSY[n] = 0. A TX message attached to a slot can
only be aborted if it is not stored in the two internal buffers holding the

MH_2323

MH_2324

MH_2325

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

48 | 306

two best candidates for the next TX message. Despite a TX message is
aborted, it may have been sent, check the TX_PQ_STS1.SENT[n] bit
register for the slot n. This bit field register is only accessible in write
mode if the unlock key sequence has been performed prior to write.

1.4.4.2.1.47 TX_PQ_CTRL2

TX Priority Queue Control register 2

Address
Offset:

0x00000314 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit

E
N

A
B

L
E

Mode R
W

Initial
Value 0

x0

Bit 31:0 When ENABLE[n] is set to 1, the slot n in the TX Priority Queue is
enabled. A TX Priority Queue slot cannot be started if not enabled.
Aborting a not started slot n has no effect

1.4.4.2.1.48 TX_PQ_START_ADD

TX Priority Queue Start Address

This register is only accessible in write mode if the TX Priority Queue is not busy, see BUSY flag in

TX_PQ_STS register. It means TX_PQ_STS register is equal to 0x0.

This register is protected by a register bank CRC defined in CRC_REG register.

MH_2326

MH_2327

MH_2328

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

49 | 306

Address
Offset:

0x00000318 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit V
A
L

Mode R
W

Initial
Value 0

x0

Bit 31:0 Define the start address of the TX Priority Queue in the system memory.
All TX header descriptors in the TX Priority Queue are continuously
defined from this start address. The VAL[1:0] bits are always assumed to
be 0b00 whatever the value written. This address value must always be
word aligned (32bit). This bit field register is only accessible in write
mode if the TX Priority Queue is not busy, see BUSY flag in TX_PQ_STS
register

1.4.4.2.1.49 RX_DESC_ADD_PT

RX descriptor Current Address Pointer

Address
Offset:

0x00000400 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit V
A
L

Mode R

Initial
Value 0

x0

Bit 31:0 Provide the address used to fetch the current RX descriptor. This address
value is always word aligned (32bit).

1.4.4.2.1.50 RX_STATISTICS

RX Message Counter register

MH_2329

MH_2330

MH_2331

MH_2332

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

50 | 306

Address
Offset:

0x00000404 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit

U
N

S
U

C
C

S
U

C
C

Mode

R
W

R
W

Initial
Value

0
x0

0
x0

Bit 11:0 Counter incremented with every successful reception of a CAN message
from the CAN bus. The counter wraps automatically to 0 and can be
cleared when writing 0x00 to the bit field. An interrupt is generated
when the counter wraps.

Bit 27:16 Counter incremented with every unsuccessful reception of a CAN
message from the CAN bus. The counter wraps automatically to 0 and
can be cleared when writing 0x00 to the bit field. . An interrupt is
generated when the counter wraps.

1.4.4.2.1.51 RX_FQ_STS0

RX FIFO Queue Status register 0

Address
Offset:

0x00000408 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit

S
T
O

P

B
U

S
Y

Mode R
 R

Initial
Value

0
x0

0
x0

Bit 7:0 When BUSY[n] = 1 the RX FIFO Queue n is busy, this means the FIFO
Queue is started and running (RX message to be written to the RX FIFO
Queue can be processed). When the BUSY[n] = 0, the RX FIFO Queue n
is stopped and would require a write to the RX_FQ_CTRL0.START[n] to

MH_2334

MH_2333

MH_2335

MH_2337

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

51 | 306

make it active again. When the RX FIFO Queue n is aborted, the BUSY[n]
flag is set to 0 only when no acknowledge is pending.

Bit 23:16 When STOP[n] = 1 the RX FIFO Queue n is on hold, it means started but
waiting for the SW to react. The STOP[n] can be set only if the BUSY[n] =
1. Several root causes may lead to the RX FIFO Queue n to stop: an error
is detected, or an RX descriptor is not valid, or the FIFO is full. To
identify the potential issues, refer to the RX_FQ_STS1 and RX_FQ_STS2
registers. In order to keep going with the RX FIFO Queue n, a write to the
RX_FQ_CTRL0.START[n] is required. When BUSY[n] = 0, this bit is
automatically set to 0

1.4.4.2.1.52 RX_FQ_STS1

RX FIFO Queue Status register 1

Address
Offset:

0x0000040c Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit

E
R

R
O

R

U
N

V
A
L
ID

Mode R
 R

Initial
Value

0
x0

0
x0

Bit 7:0 When UNVALID[n] = 1 the RX FIFO Queue n is on hold due to an RX
descriptor detected with VALID=0

Bit 23:16 When ERROR[n] = 1 the RX FIFO Queue n is on hold due to an
inconsistent RX descriptor being loaded, see chapter Descriptor
Protection.

1.4.4.2.1.53 RX_FQ_STS2

RX FIFO Queue Status register 2

MH_2336

MH_2338

MH_2340

MH_2339

MH_2341

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

52 | 306

Address
Offset:

0x00000410 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit

D
C

_F
U

L
L

Mode R

Initial
Value

0
x0

Bit 7:0 When DC_FULL[n] = 1 the RX FIFO Queue n is stopped due to the RX
FIFO Queue n being full. This register is relevant only for the Continuous
Mode as in Normal mode, there is no need to provide such information to
the MH

1.4.4.2.1.54 RX_FQ_CTRL0

RX FIFO Queue Control register 0

Address
Offset:

0x00000414 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit

S
T
A
R

T

Mode

R
W

Initial
Value

0
x0

Bit 7:0 When writing a 1 to the START[n], the RX FIFO Queue n is started. This
bit is autocleared and once started, the RX_FQ_STS0.BUSY[n] is set to 1.
The MH must be started prior to any RX FIFO Queue start (MH_STS.BUSY
set to 1). An RX FIFO Queue n can only be started if
RX_FQ_CTRL2.ENABLE[n] is set to 1.

1.4.4.2.1.55 RX_FQ_CTRL1

RX FIFO Queue Control register 1

MH_2342

MH_2343

MH_2344

MH_2345

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

53 | 306

This register is only accessible in write mode if the unlock key sequence has been performed prior to

write

Address
Offset:

0x00000418 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit

A
B

O
R

T

Mode

R
W

Initial
Value

0
x0

Bit 7:0 When ABORT[n] is set to 1, the RX FIFO Queue n is aborted. Once set to
1, the MH will abort all pending transactions related to the RX FIFO
Queue n whenever required. The abort can be effective only if the RX
FIFO Queue n is enabled. This bit must be set back to 0 only when the
RX FIFO Queue n is inactive, RX_FQ_STS0.BUSY[n] = 0. This bit field
register is only accessible in write mode if the unlock key sequence has
been performed prior to write.

1.4.4.2.1.56 RX_FQ_CTRL2

RX FIFO Queue Control register 2

Address
Offset:

0x0000041c Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit

E
N

A
B

L
E

Mode

R
W

Initial
Value

0
x0

Bit 7:0 When ENABLE[n] is set to 1, the RX FIFO Queue n is enabled. The RX
FIFO Queue n cannot be started if not enabled. The abort of an RX FIFO
Queue n not started would have no effect.

MH_2346

MH_2347

MH_2348

MH_2349

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

54 | 306

1.4.4.2.1.57 RX_FQ_ADD_PT0

RX FIFO Queue 0 Current Address Pointer

Address
Offset:

0x00000420 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit V
A
L

Mode R

Initial
Value 0

x0

Bit 31:0 Provide the current RX Header Descriptor address pointer for the RX
FIFO Queue 0 in the system memory. To follow RX descriptor over time,
refer to the RX_DESC_ADD_PT register. This address value is always word
aligned (32bit).

1.4.4.2.1.58 RX_FQ_START_ADD0

RX FIFO Queue 0 link list Start Address

This register is only accessible in write mode if the RX FIFO Queue 0 is not busy, see BUSY flag in

RX_FQ_STS0 register.

This register is protected by a register bank CRC defined in CRC_REG register.

Address
Offset:

0x00000424 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit V
A
L

Mode R
W

Initial
Value 0

x0

Bit 31:0 Define the start address of the RX FIFO Queue link list descriptor in
system memory. The VAL[1:0] bits are always assumed to be 0b00
whatever the value written. This address value must always be word

MH_2350

MH_2351

MH_2352

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

55 | 306

aligned (32bit). This register is only accessible in write mode if the RX
FIFO Queue 0 is not busy, see BUSY flag in RX_FQ_STS0 register

1.4.4.2.1.59 RX_FQ_SIZE0

RX FIFO Queue 0 link list and data container Size

This register is only accessible in write mode if the RX FIFO Queue 0 is not busy, see BUSY flag in

RX_FQ_STS0 register.

This register is protected by a register bank CRC defined in CRC_REG register.

Address
Offset:

0x00000428 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit

D
C

_S
IZ

E

M
A
X
_D

E
S

C

Mode

R
W

R
W

Initial
Value

0
x0

0
x0

Bit 9:0 Define the maximum number of descriptors in the RX FIFO Queue link
list. It is important to note that MAX_DESC = 0 does not prevent the RX
FIFO Queue to be enabled and started. An active and running RX FIFO
Queue with MAX_DESC = 0 is not allowed and will result in a DESC_ERR
interrupt if no RX descriptor is defined. The size to be allocated to the
link list must be equal to MAX_DESC * 16bytes for MAX_DESC >= 1. This
register is only accessible in write mode if the RX FIFO Queue 0 is not
busy, see BUSY flag in RX_FQ_STS0 register

Bit 27:16 In Normal mode only the DC_SIZE[6:0] is used to define the maximum
size of an RX data container for the RX FIFO Queue. The data container
size is DC_SIZE[6:0] * 32bytes and one is attached to every RX
descriptor. In continuous mode, it defines the size of the single data
container used to write all RX messages. The overall data container size
is DC_SIZE[11:0] * 32bytes for MAX_DESC > = 1. When set to 0, the RX
FIFO Queue can be enabled but not started. This register is only
accessible in write mode if the RX FIFO Queue 0 is not busy, see BUSY
flag in RX_FQ_STS0 register

1.4.4.2.1.60 RX_FQ_DC_START_ADD0

RX FIFO Queue 0 Data Container Start Address

This register is accessible in write mode if the RX FIFO Queue 0 is not busy, see BUSY flag in

RX_FQ_STS0 register.

MH_2353

MH_2355

MH_2354

MH_2356

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

56 | 306

This register is protected by a register bank CRC defined in CRC_REG register. This register is used

only in Continuous Mode

Address
Offset:

0x0000042c Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit V
A
L

Mode R
W

Initial
Value 0

x0

Bit 31:0 Define the Data Container Start Address in system memory. This bit field
is relevant only when the MH is configured in Continuous Mode. The
VAL[1:0] bits are always assumed to be 0b00 whatever the value written.
This address value must always be word aligned (32bit). This register is
only accessible in write mode if the RX FIFO Queue 0 is not busy, see
BUSY flag in RX_FQ_STS0 register

1.4.4.2.1.61 RX_FQ_RD_ADD_PT0

RX FIFO Queue 0 Read Address Pointer

This register is used only in Continuous Mode.

Address
Offset:

0x00000430 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit V
A
L

Mode R
W

Initial
Value 0

x0

Bit 31:0 The SW uses this register to indicate the Data Read Address of the RX
message being read to the MH. This address must point to the last word
of the RX message considered in the data container. This bit field is
relevant only when the MH is configured in Continuous mode. The MH

MH_2357

MH_2358

MH_2359

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

57 | 306

uses this information to ensure that enough memory space is available to
write the next message. For an initial start, it is mandatory to set
VAL[1:0] to 0b11, to avoid RX_FQ_RD_ADD_PT0 register to be equal to
the RX_FQ_START_ADDR0 registers. Excepted for the initial value, the
address value must always be word aligned (32bit), VAL[1:0] must be set
to 0b00.

1.4.4.2.1.62 RX_FQ_ADD_PT1

RX FIFO Queue 1 Current Address Pointer

Address
Offset:

0x00000438 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit V
A
L

Mode R

Initial
Value 0

x0

Bit 31:0 Provide the current RX Header Descriptor address pointer for the RX
FIFO Queue 1 in the system memory. To follow RX descriptor over time,
refer to the RX_DESC_ADD_PT register. This address value is always word
aligned (32bit).

1.4.4.2.1.63 RX_FQ_START_ADD1

RX FIFO Queue 1 link list Start Address

This register is only accessible in write mode if the RX FIFO Queue 1 is not busy, see BUSY flag in

RX_FQ_STS0 register.

This register is protected by a register bank CRC defined in CRC_REG register.

MH_2360

MH_2361

MH_2362

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

58 | 306

Address
Offset:

0x0000043c Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit V
A
L

Mode R
W

Initial
Value 0

x0

Bit 31:0 Define the start address of the RX FIFO Queue link list descriptor in
system memory. The VAL[1:0] bits are always assumed to be 0b00
whatever the value written. This address value must always be word
aligned (32bit). This register is only accessible in write mode if the RX
FIFO Queue 1 is not busy, see BUSY flag in RX_FQ_STS0 register

1.4.4.2.1.64 RX_FQ_SIZE1

RX FIFO Queue 1 link list and data container Size

This register is only accessible in write mode if the RX FIFO Queue 1 is not busy, see BUSY flag in

RX_FQ_STS0 register.

This register is protected by a register bank CRC defined in CRC_REG register.

Address
Offset:

0x00000440 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit

D
C

_S
IZ

E

M
A
X
_D

E
S

C

Mode

R
W

R
W

Initial
Value

0
x0

0
x0

Bit 9:0 Define the maximum number of descriptors in the RX FIFO Queue link
list. It is important to note that MAX_DESC = 0 does not prevent the RX
FIFO Queue to be enabled and started. An active and running RX FIFO
Queue with MAX_DESC = 0 is not allowed and will result in a DESC_ERR
interrupt if no RX descriptor is defined. The size to be allocated to the

MH_2363

MH_2364

MH_2366

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

59 | 306

link list must be equal to MAX_DESC * 16bytes for MAX_DESC >= 1. This
register is only accessible in write mode if the RX FIFO Queue 1 is not
busy, see BUSY flag in RX_FQ_STS0 register

Bit 27:16 In Normal mode only the DC_SIZE[6:0] is used to define the maximum
size of an RX data container for the RX FIFO Queue. The data container
size is DC_SIZE[6:0] * 32bytes and one is attached to every RX
descriptor. In continuous mode, it defines the size of the single data
container used to write all RX messages. The overall data container size
is DC_SIZE[11:0] * 32bytes for MAX_DESC > = 1. When set to 0, the RX
FIFO Queue can be enabled but not started. This register is only
accessible in write mode if the RX FIFO Queue 1 is not busy, see BUSY
flag in RX_FQ_STS0 register

1.4.4.2.1.65 RX_FQ_DC_START_ADD1

RX FIFO Queue 1 Data Container Start Address

This register is accessible in write mode if the RX FIFO Queue 1 is not busy, see BUSY flag in

RX_FQ_STS0 register.

This register is protected by a register bank CRC defined in CRC_REG register. This register is used

only in Continuous Mode

Address
Offset:

0x00000444 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit V
A
L

Mode R
W

Initial
Value 0

x0

Bit 31:0 Define the Data Container Start Address in system memory. This bit field
is relevant only when the MH is configured in Continuous Mode. The
VAL[1:0] bits are always assumed to be 0b00 whatever the value written.
This address value must always be word aligned (32bit). This register is
only accessible in write mode if the RX FIFO Queue 1 is not busy, see
BUSY flag in RX_FQ_STS0 register

1.4.4.2.1.66 RX_FQ_RD_ADD_PT1

RX FIFO Queue 1 Read Address Pointer

This register is used only in Continuous Mode.

MH_2365

MH_2367

MH_2368

MH_2369

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

60 | 306

Address
Offset:

0x00000448 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit V
A
L

Mode R
W

Initial
Value 0

x0

Bit 31:0 The SW uses this register to indicate the Data Read Address of the RX
message being read to the MH. This address must point to the last word
of the RX message considered in the data container. This bit field is
relevant only when the MH is configured in Continuous mode. The MH
uses this information to ensure enough memory space is available to
write the next message. For an initial start, it is mandatory to set
VAL[1:0] to 0b11, to avoid RX_FQ_RD_ADD_PT1 register to be equal to
the RX_FQ_START_ADDR1 registers. Excepted for the initial value, the
address value must always be word aligned (32bit), VAL[1:0] must be set
to 0b00.

1.4.4.2.1.67 RX_FQ_ADD_PT2

RX FIFO Queue 2 Current Address Pointer

Address
Offset:

0x00000450 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit V
A
L

Mode R

Initial
Value 0

x0

Bit 31:0 Provide the current RX Header Descriptor address pointer for the RX
FIFO Queue 2 in the system memory. To follow RX descriptor over time,

MH_2370

MH_2371

MH_2372

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

61 | 306

refer to the RX_DESC_ADD_PT register. This address value is always word
aligned (32bit).

1.4.4.2.1.68 RX_FQ_START_ADD2

RX FIFO Queue 2 link list Start Address

This register is only accessible in write mode if the RX FIFO Queue 2 is not busy, see BUSY flag in

RX_FQ_STS0 register.

This register is protected by a register bank CRC defined in CRC_REG register.

Address
Offset:

0x00000454 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit V
A
L

Mode R
W

Initial
Value 0

x0

Bit 31:0 Define the start address of the RX FIFO Queue link list descriptor in
system memory. The VAL[1:0] bits are always assumed to be 0b00
whatever the value written. This address value must always be word
aligned (32bit). This register is only accessible in write mode if the RX
FIFO Queue 2 is not busy, see BUSY flag in RX_FQ_STS0 register

1.4.4.2.1.69 RX_FQ_SIZE2

RX FIFO Queue 2 link list and data container Size

This register is only accessible in write mode if the RX FIFO Queue 2 is not busy, see BUSY flag in

RX_FQ_STS0 register.

This register is protected by a register bank CRC defined in CRC_REG register.

MH_2373

MH_2374

MH_2375

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

62 | 306

Address
Offset:

0x00000458 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit

D
C

_S
IZ

E

M
A
X
_D

E
S

C

Mode

R
W

R
W

Initial
Value

0
x0

0
x0

Bit 9:0 Define the maximum number of descriptors in the RX FIFO Queue link
list. It is important to note that MAX_DESC = 0 does not prevent the RX
FIFO Queue to be enabled and started. An active and running RX FIFO
Queue with MAX_DESC = 0 is not allowed and will result in a DESC_ERR
interrupt if no RX descriptor is defined. The size to be allocated to the
link list must be equal to MAX_DESC * 16bytes for MAX_DESC >= 1. This
register is only accessible in write mode if the RX FIFO Queue 2 is not
busy, see BUSY flag in RX_FQ_STS0 register

Bit 27:16 In Normal mode only the DC_SIZE[6:0] is used to define the maximum
size of an RX data container for the RX FIFO Queue. The data container
size is DC_SIZE[6:0] * 32bytes and one is attached to every RX
descriptor. In continuous mode, it defines the size of the single data
container used to write all RX messages. The overall data container size
is DC_SIZE[11:0] * 32bytes for MAX_DESC > = 1. When set to 0, the RX
FIFO Queue can be enabled but not started. This register is only
accessible in write mode if the RX FIFO Queue 2 is not busy, see BUSY
flag in RX_FQ_STS0 register

1.4.4.2.1.70 RX_FQ_DC_START_ADD2

RX FIFO Queue 2 Data Container Start Address

This register is accessible in write mode if the RX FIFO Queue 2 is not busy, see BUSY flag in

RX_FQ_STS0 register.

This register is protected by a register bank CRC defined in CRC_REG register. This register is used

only in Continuous Mode

MH_2377

MH_2376

MH_2378

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

63 | 306

Address
Offset:

0x0000045c Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit V
A
L

Mode R
W

Initial
Value 0

x0

Bit 31:0 Define the Data Container Start Address in system memory. This bit field
is relevant only when the MH is configured in Continuous Mode. The
VAL[1:0] bits are always assumed to be 0b00 whatever the value written.
This address value must always be word aligned (32bit). This register is
only accessible in write mode if the RX FIFO Queue 2 is not busy, see
BUSY flag in RX_FQ_STS0 register

1.4.4.2.1.71 RX_FQ_RD_ADD_PT2

RX FIFO Queue 2 Read Address Pointer

This register is used only in Continuous Mode.

Address
Offset:

0x00000460 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit V
A
L

Mode R
W

Initial
Value 0

x0

Bit 31:0 The SW uses this register to indicate the Data Read Address of the RX
message being read to the MH. This address must point to the last word
of the RX message considered in the data container. This bit field is
relevant only when the MH is configured in Continuous mode. The MH
uses this information to ensure enough memory space is available to
write the next message. For an initial start, it is mandatory to set

MH_2379

MH_2380

MH_2381

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

64 | 306

VAL[1:0] to 0b11, to avoid RX_FQ_RD_ADD_PT2 register to be equal to
the RX_FQ_START_ADDR2 registers. Excepted for the initial value, the
address value must always be word aligned (32bit), VAL[1:0] must be set
to 0b00.

1.4.4.2.1.72 RX_FQ_ADD_PT3

RX FIFO Queue 3 Current Address Pointer

Address
Offset:

0x00000468 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit V
A
L

Mode R

Initial
Value 0

x0

Bit 31:0 Provide the current RX Header Descriptor address pointer for the RX
FIFO Queue 3 in the system memory. To follow RX descriptor over time,
refer to the RX_DESC_ADD_PT register. This address value is always word
aligned (32bit).

1.4.4.2.1.73 RX_FQ_START_ADD3

RX FIFO Queue 3 link list Start Address

This register is only accessible in write mode if the RX FIFO Queue 3 is not busy, see BUSY flag in

RX_FQ_STS0 register.

This register is protected by a register bank CRC defined in CRC_REG register.

MH_2382

MH_2383

MH_2384

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

65 | 306

Address
Offset:

0x0000046c Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit V
A
L

Mode R
W

Initial
Value 0

x0

Bit 31:0 Define the start address of the RX FIFO Queue link list descriptor in
system memory. The VAL[1:0] bits are always assumed to be 0b00
whatever the value written. This address value must always be word
aligned (32bit). This register is only accessible in write mode if the RX
FIFO Queue 3 is not busy, see BUSY flag in RX_FQ_STS0 register

1.4.4.2.1.74 RX_FQ_SIZE3

RX FIFO Queue 3 link list and data container Size

This register is only accessible in write mode if the RX FIFO Queue 3 is not busy, see BUSY flag in

RX_FQ_STS0 register.

This register is protected by a register bank CRC defined in CRC_REG register.

Address
Offset:

0x00000470 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit

D
C

_S
IZ

E

M
A
X
_D

E
S

C

Mode

R
W

R
W

Initial
Value

0
x0

0
x0

Bit 9:0 Define the maximum number of descriptors in the RX FIFO Queue link
list. It is important to note that MAX_DESC = 0 does not prevent the RX
FIFO Queue to be enabled and started. An active and running RX FIFO
Queue with MAX_DESC = 0 is not allowed and will result in a DESC_ERR
interrupt if no RX descriptor is defined. The size to be allocated to the

MH_2385

MH_2386

MH_2388

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

66 | 306

link list must be equal to MAX_DESC * 16bytes for MAX_DESC >= 1. This
register is only accessible in write mode if the RX FIFO Queue 3 is not
busy, see BUSY flag in RX_FQ_STS0 register

Bit 27:16 In Normal mode only the DC_SIZE[6:0] is used to define the maximum
size of an RX data container for the RX FIFO Queue. The data container
size is DC_SIZE[6:0] * 32bytes and one is attached to every RX
descriptor. In continuous mode, it defines the size of the single data
container used to write all RX messages. The overall data container size
is DC_SIZE[11:0] * 32bytes for MAX_DESC > = 1. When set to 0, the RX
FIFO Queue can be enabled but not started. This register is only
accessible in write mode if the RX FIFO Queue 3 is not busy, see BUSY
flag in RX_FQ_STS0 register

1.4.4.2.1.75 RX_FQ_DC_START_ADD3

RX FIFO Queue 3 Data Container Start Address

This register is accessible in write mode if the RX FIFO Queue 3 is not busy, see BUSY flag in

RX_FQ_STS0 register.

This register is protected by a register bank CRC defined in CRC_REG register. This register is used

only in Continuous Mode

Address
Offset:

0x00000474 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit V
A
L

Mode R
W

Initial
Value 0

x0

Bit 31:0 Define the Data Container Start Address in system memory. This bit field
is relevant only when the MH is configured in Continuous Mode. The
VAL[1:0] bits are always assumed to be 0b00 whatever the value written.
This address value must always be word aligned (32bit). This register is
only accessible in write mode if the RX FIFO Queue 3 is not busy, see
BUSY flag in RX_FQ_STS0 register

1.4.4.2.1.76 RX_FQ_RD_ADD_PT3

RX FIFO Queue 3 Read Address Pointer

This register is used only in Continuous Mode.

MH_2387

MH_2389

MH_2390

MH_2391

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

67 | 306

Address
Offset:

0x00000478 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit V
A
L

Mode R
W

Initial
Value 0

x0

Bit 31:0 The SW uses this register to indicate the Data Read Address of the RX
message being read to the MH. This address must point to the last word
of the RX message considered in the data container. This bit field is
relevant only when the MH is configured in Continuous mode. The MH
uses this information to ensure enough memory space is available to
write the next message. For an initial start, it is mandatory to set
VAL[1:0] to 0b11, to avoid RX_FQ_RD_ADD_PT3 register to be equal to
the RX_FQ_START_ADDR3 registers. Excepted for the initial value, the
address value must always be word aligned (32bit), VAL[1:0] must be set
to 0b00.

1.4.4.2.1.77 RX_FQ_ADD_PT4

RX FIFO Queue 4 Current Address Pointer

Address
Offset:

0x00000480 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit V
A
L

Mode R

Initial
Value 0

x0

Bit 31:0 Provide the current RX Header Descriptor address pointer for the RX
FIFO Queue 4 in the system memory. To follow RX descriptor over time,

MH_2392

MH_2393

MH_2394

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

68 | 306

refer to the RX_DESC_ADD_PT register. This address value is always word
aligned (32bit).

1.4.4.2.1.78 RX_FQ_START_ADD4

RX FIFO Queue 4 link list Start Address

This register is only accessible in write mode if the RX FIFO Queue 4 is not busy, see BUSY flag in

RX_FQ_STS0 register.

This register is protected by a register bank CRC defined in CRC_REG register.

Address
Offset:

0x00000484 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit V
A
L

Mode R
W

Initial
Value 0

x0

Bit 31:0 Define the start address of the RX FIFO Queue link list descriptor in
system memory. The VAL[1:0] bits are always assumed to be 0b00
whatever the value written. This address value must always be word
aligned (32bit). This register is only accessible in write mode if the RX
FIFO Queue 4 is not busy, see BUSY flag in RX_FQ_STS0 register

1.4.4.2.1.79 RX_FQ_SIZE4

RX FIFO Queue 4 link list and data container Size

This register is only accessible in write mode if the RX FIFO Queue 4 is not busy, see BUSY flag in

RX_FQ_STS0 register.

This register is protected by a register bank CRC defined in CRC_REG register.

MH_2395

MH_2396

MH_2397

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

69 | 306

Address
Offset:

0x00000488 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit

D
C

_S
IZ

E

M
A
X
_D

E
S

C

Mode

R
W

R
W

Initial
Value

0
x0

0
x0

Bit 9:0 Define the maximum number of descriptors in the RX FIFO Queue link
list. It is important to note that MAX_DESC = 0 does not prevent the RX
FIFO Queue to be enabled and started. An active and running RX FIFO
Queue with MAX_DESC = 0 is not allowed and will result in a DESC_ERR
interrupt if no RX descriptor is defined. The size to be allocated to the
link list must be equal to MAX_DESC * 16bytes for MAX_DESC >= 1. This
register is only accessible in write mode if the RX FIFO Queue 4 is not
busy, see BUSY flag in RX_FQ_STS0 register

Bit 27:16 In Normal mode only the DC_SIZE[6:0] is used to define the maximum
size of an RX data container for the RX FIFO Queue. The data container
size is DC_SIZE[6:0] * 32bytes and one is attached to every RX
descriptor. In continuous mode, it defines the size of the single data
container used to write all RX messages. The overall data container size
is DC_SIZE[11:0] * 32bytes for MAX_DESC > = 1. When set to 0, the RX
FIFO Queue can be enabled but not started. This register is only
accessible in write mode if the RX FIFO Queue 4 is not busy, see BUSY
flag in RX_FQ_STS0 register

1.4.4.2.1.80 RX_FQ_DC_START_ADD4

RX FIFO Queue 4 Data Container Start Address

This register is accessible in write mode if the RX FIFO Queue 4 is not busy, see BUSY flag in

RX_FQ_STS0 register.

This register is protected by a register bank CRC defined in CRC_REG register. This register is used

only in Continuous Mode

MH_2399

MH_2398

MH_2400

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

70 | 306

Address
Offset:

0x0000048c Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit V
A
L

Mode R
W

Initial
Value 0

x0

Bit 31:0 Define the Data Container Start Address in system memory. This bit field
is relevant only when the MH is configured in Continuous Mode. The
VAL[1:0] bits are always assumed to be 0b00 whatever the value written.
This address value must always be word aligned (32bit). This register is
only accessible in write mode if the RX FIFO Queue 4 is not busy, see
BUSY flag in RX_FQ_STS0 register

1.4.4.2.1.81 RX_FQ_RD_ADD_PT4

RX FIFO Queue 4 Read Address Pointer

This register is used only in Continuous Mode.

Address
Offset:

0x00000490 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit V
A
L

Mode R
W

Initial
Value 0

x0

Bit 31:0 The SW uses this register to indicate the Data Read Address of the RX
message being read to the MH. This address must point to the last word
of the RX message considered in the data container. This bit field is
relevant only when the MH is configured in Continuous mode. The MH
uses this information to ensure enough memory space is available to
write the next message. For an initial start, it is mandatory to set

MH_2401

MH_2402

MH_2403

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

71 | 306

VAL[1:0] to 0b11, to avoid RX_FQ_RD_ADD_PT4 register to be equal to
the RX_FQ_START_ADDR4 registers. Excepted for the initial value, the
address value must always be word aligned (32bit), VAL[1:0] must be set
to 0b00.

1.4.4.2.1.82 RX_FQ_ADD_PT5

RX FIFO Queue 5 Current Address Pointer

Address
Offset:

0x00000498 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit V
A
L

Mode R

Initial
Value 0

x0

Bit 31:0 Provide the current RX Header Descriptor address pointer for the RX
FIFO Queue 5 in the system memory. To follow RX descriptor over time,
refer to the RX_DESC_ADD_PT register. This address value is always word
aligned (32bit).

1.4.4.2.1.83 RX_FQ_START_ADD5

RX FIFO Queue 5 link list Start Address

This register is only accessible in write mode if the RX FIFO Queue 5 is not busy, see BUSY flag in

RX_FQ_STS0 register.

This register is protected by a register bank CRC defined in CRC_REG register.

MH_2404

MH_2405

MH_2406

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

72 | 306

Address
Offset:

0x0000049c Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit V
A
L

Mode R
W

Initial
Value 0

x0

Bit 31:0 Define the start address of the RX FIFO Queue link list descriptor in
system memory. The VAL[1:0] bits are always assumed to be 0b00
whatever the value written. This address value must always be word
aligned (32bit). This register is only accessible in write mode if the RX
FIFO Queue 5 is not busy, see BUSY flag in RX_FQ_STS0 register

1.4.4.2.1.84 RX_FQ_SIZE5

RX FIFO Queue 5 link list and data container Size

This register is only accessible in write mode if the RX FIFO Queue 5 is not busy, see BUSY flag in

RX_FQ_STS0 register.

This register is protected by a register bank CRC defined in CRC_REG register.

Address
Offset:

0x000004a0 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit

D
C

_S
IZ

E

M
A
X
_D

E
S

C

Mode

R
W

R
W

Initial
Value

0
x0

0
x0

Bit 9:0 Define the maximum number of descriptors in the RX FIFO Queue link
list. It is important to note that MAX_DESC = 0 does not prevent the RX
FIFO Queue to be enabled and started. An active and running RX FIFO
Queue with MAX_DESC = 0 is not allowed and will result in a DESC_ERR
interrupt if no RX descriptor is defined. The size to be allocated to the

MH_2407

MH_2408

MH_2410

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

73 | 306

link list must be equal to MAX_DESC * 16bytes for MAX_DESC >= 1. This
register is only accessible in write mode if the RX FIFO Queue 5 is not
busy, see BUSY flag in RX_FQ_STS0 register

Bit 27:16 In Normal mode only the DC_SIZE[6:0] is used to define the maximum
size of an RX data container for the RX FIFO Queue. The data container
size is DC_SIZE[6:0] * 32bytes and one is attached to every RX
descriptor. In continuous mode, it defines the size of the single data
container used to write all RX messages. The overall data container size
is DC_SIZE[11:0] * 32bytes for MAX_DESC > = 1. When set to 0, the RX
FIFO Queue can be enabled but not started. This register is only
accessible in write mode if the RX FIFO Queue 5 is not busy, see BUSY
flag in RX_FQ_STS0 register

1.4.4.2.1.85 RX_FQ_DC_START_ADD5

RX FIFO Queue 5 Data Container Start Address

This register is accessible in write mode if the RX FIFO Queue 5 is not busy, see BUSY flag in

RX_FQ_STS0 register.

This register is protected by a register bank CRC defined in CRC_REG register. This register is used

only in Continuous Mode

Address
Offset:

0x000004a4 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit V
A
L

Mode R
W

Initial
Value 0

x0

Bit 31:0 Define the Data Container Start Address in system memory. This bit field
is relevant only when the MH is configured in Continuous Mode. The
VAL[1:0] bits are always assumed to be 0b00 whatever the value written.
This address value must always be word aligned (32bit). This register is
only accessible in write mode if the RX FIFO Queue 5 is not busy, see
BUSY flag in RX_FQ_STS0 register

1.4.4.2.1.86 RX_FQ_RD_ADD_PT5

RX FIFO Queue 5 Read Address Pointer

This register is used only in Continuous Mode.

MH_2409

MH_2411

MH_2412

MH_2413

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

74 | 306

Address
Offset:

0x000004a8 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit V
A
L

Mode R
W

Initial
Value 0

x0

Bit 31:0 The SW uses this register to indicate the Data Read Address of the RX
message being read to the MH. This address must point to the last word
of the RX message considered in the data container. This bit field is
relevant only when the MH is configured in Continuous mode. The MH
uses this information to ensure enough memory space is available to
write the next message. For an initial start, it is mandatory to set
VAL[1:0] to 0b11, to avoid RX_FQ_RD_ADD_PT5 register to be equal to
the RX_FQ_START_ADDR5 registers. Excepted for the initial value, the
address value must always be word aligned (32bit), VAL[1:0] must be set
to 0b00.

1.4.4.2.1.87 RX_FQ_ADD_PT6

RX FIFO Queue 6 Current Address Pointer

Address
Offset:

0x000004b0 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit V
A
L

Mode R

Initial
Value 0

x0

Bit 31:0 Provide the current RX Header Descriptor address pointer for the RX
FIFO Queue 6 in the system memory. To follow RX descriptor over time,

MH_2414

MH_2415

MH_2416

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

75 | 306

refer to the RX_DESC_ADD_PT register. This address value is always word
aligned (32bit).

1.4.4.2.1.88 RX_FQ_START_ADD6

RX FIFO Queue 6 link list Start Address

This register is only accessible in write mode if the RX FIFO Queue 6 is not busy, see BUSY flag in

RX_FQ_STS0 register.

This register is protected by a register bank CRC defined in CRC_REG register.

Address
Offset:

0x000004b4 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit V
A
L

Mode R
W

Initial
Value 0

x0

Bit 31:0 Define the start address of the RX FIFO Queue link list descriptor in
system memory. The VAL[1:0] bits are always assumed to be 0b00
whatever the value written. This address value must always be word
aligned (32bit). This register is only accessible in write mode if the RX
FIFO Queue 6 is not busy, see BUSY flag in RX_FQ_STS0 register

1.4.4.2.1.89 RX_FQ_SIZE6

RX FIFO Queue 6 link list and data container Size

This register is only accessible in write mode if the RX FIFO Queue 6 is not busy, see BUSY flag in

RX_FQ_STS0 register.

This register is protected by a register bank CRC defined in CRC_REG register.

MH_2417

MH_2418

MH_2419

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

76 | 306

Address
Offset:

0x000004b8 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit

D
C

_S
IZ

E

M
A
X
_D

E
S

C

Mode

R
W

R
W

Initial
Value

0
x0

0
x0

Bit 9:0 Define the maximum number of descriptors in the RX FIFO Queue link
list. It is important to note that MAX_DESC = 0 does not prevent the RX
FIFO Queue to be enabled and started. An active and running RX FIFO
Queue with MAX_DESC = 0 is not allowed and will result in a DESC_ERR
interrupt if no RX descriptor is defined. The size to be allocated to the
link list must be equal to MAX_DESC * 16bytes for MAX_DESC >= 1. This
register is only accessible in write mode if the RX FIFO Queue 6 is not
busy, see BUSY flag in RX_FQ_STS0 register

Bit 27:16 In Normal mode only the DC_SIZE[6:0] is used to define the maximum
size of an RX data container for the RX FIFO Queue. The data container
size is DC_SIZE[6:0] * 32bytes and one is attached to every RX
descriptor. In continuous mode, it defines the size of the single data
container used to write all RX messages. The overall data container size
is DC_SIZE[11:0] * 32bytes for MAX_DESC > = 1. When set to 0, the RX
FIFO Queue can be enabled but not started. This register is only
accessible in write mode if the RX FIFO Queue 6 is not busy, see BUSY
flag in RX_FQ_STS0 register

1.4.4.2.1.90 RX_FQ_DC_START_ADD6

RX FIFO Queue 6 Data Container Start Address

This register is accessible in write mode if the RX FIFO Queue 6 is not busy, see BUSY flag in

RX_FQ_STS0 register.

This register is protected by a register bank CRC defined in CRC_REG register. This register is used

only in Continuous Mode

MH_2421

MH_2420

MH_2422

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

77 | 306

Address
Offset:

0x000004bc Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit V
A
L

Mode R
W

Initial
Value 0

x0

Bit 31:0 Define the Data Container Start Address in system memory. This bit field
is relevant only when the MH is configured in Continuous Mode. The
VAL[1:0] bits are always assumed to be 0b00 whatever the value written.
This address value must always be word aligned (32bit). This register is
only accessible in write mode if the RX FIFO Queue 6 is not busy, see
BUSY flag in RX_FQ_STS0 register

1.4.4.2.1.91 RX_FQ_RD_ADD_PT6

RX FIFO Queue 6 Read Address Pointer

This register is used only in Continuous Mode.

Address
Offset:

0x000004c0 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit V
A
L

Mode R
W

Initial
Value 0

x0

Bit 31:0 The SW uses this register to indicate the Data Read Address of the RX
message being read to the MH. This address must point to the last word
of the RX message considered in the data container. This bit field is
relevant only when the MH is configured in Continuous mode. The MH
uses this information to ensure enough memory space is available to
write the next message. For an initial start, it is mandatory to set

MH_2423

MH_2424

MH_2425

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

78 | 306

VAL[1:0] to 0b11, to avoid RX_FQ_RD_ADD_PT6 register to be equal to
the RX_FQ_START_ADDR6 registers. Excepted for the initial value, the
address value must always be word aligned (32bit), VAL[1:0] must be set
to 0b00.

1.4.4.2.1.92 RX_FQ_ADD_PT7

RX FIFO Queue 7 Current Address Pointer

Address
Offset:

0x000004c8 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit V
A
L

Mode R

Initial
Value 0

x0

Bit 31:0 Provide the current RX Header Descriptor address pointer for the RX
FIFO Queue 7 in the system memory. To follow RX descriptor over time,
refer to the RX_DESC_ADD_PT register. This address value is always word
aligned (32bit).

1.4.4.2.1.93 RX_FQ_START_ADD7

RX FIFO Queue 7 link list Start Address

This register is only accessible in write mode if the RX FIFO Queue 7 is not busy, see BUSY flag in

RX_FQ_STS0 register.

This register is protected by a register bank CRC defined in CRC_REG register.

MH_2426

MH_2427

MH_2428

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

79 | 306

Address
Offset:

0x000004cc Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit V
A
L

Mode R
W

Initial
Value 0

x0

Bit 31:0 Define the start address of the RX FIFO Queue link list descriptor in
system memory. The VAL[1:0] bits are always assumed to be 0b00
whatever the value written. This address value must always be word
aligned (32bit). This register is only accessible in write mode if the RX
FIFO Queue 7 is not busy, see BUSY flag in RX_FQ_STS0 register

1.4.4.2.1.94 RX_FQ_SIZE7

RX FIFO Queue 7 link list and data container Size

This register is only accessible in write mode if the RX FIFO Queue 7 is not busy, see BUSY flag in

RX_FQ_STS0 register.

This register is protected by a register bank CRC defined in CRC_REG register.

Address
Offset:

0x000004d0 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit

D
C

_S
IZ

E

M
A
X
_D

E
S

C

Mode

R
W

R
W

Initial
Value

0
x0

0
x0

Bit 9:0 Define the maximum number of descriptors in the RX FIFO Queue link
list. It is important to note that MAX_DESC = 0 does not prevent the RX
FIFO Queue to be enabled and started. An active and running RX FIFO
Queue with MAX_DESC = 0 is not allowed and will result in a DESC_ERR
interrupt if no RX descriptor is defined. The size to be allocated to the

MH_2429

MH_2430

MH_2432

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

80 | 306

link list must be equal to MAX_DESC * 16bytes for MAX_DESC >= 1. This
register is only accessible in write mode if the RX FIFO Queue 7 is not
busy, see BUSY flag in RX_FQ_STS0 register

Bit 27:16 In Normal mode only the DC_SIZE[6:0] is used to define the maximum
size of an RX data container for the RX FIFO Queue. The data container
size is DC_SIZE[6:0] * 32bytes and one is attached to every RX
descriptor. In continuous mode, it defines the size of the single data
container used to write all RX messages. The overall data container size
is DC_SIZE[11:0] * 32bytes for MAX_DESC > = 1. When set to 0, the RX
FIFO Queue can be enabled but not started. This register is only
accessible in write mode if the RX FIFO Queue 7 is not busy, see BUSY
flag in RX_FQ_STS0 register

1.4.4.2.1.95 RX_FQ_DC_START_ADD7

RX FIFO Queue 7 Data Container Start Address

This register is accessible in write mode if the RX FIFO Queue 7 is not busy, see BUSY flag in

RX_FQ_STS0 register.

This register is protected by a register bank CRC defined in CRC_REG register. This register is used

only in Continuous Mode

Address
Offset:

0x000004d4 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit V
A
L

Mode R
W

Initial
Value 0

x0

Bit 31:0 Define the Data Container Start Address in system memory. This bit field
is relevant only when the MH is configured in Continuous Mode. The
VAL[1:0] bits are always assumed to be 0b00 whatever the value written.
This address value must always be word aligned (32bit). This register is
only accessible in write mode if the RX FIFO Queue 7 is not busy, see
BUSY flag in RX_FQ_STS0 register

1.4.4.2.1.96 RX_FQ_RD_ADD_PT7

RX FIFO Queue 7 Read Address Pointer

This register is used only in Continuous Mode.

MH_2431

MH_2433

MH_2434

MH_2435

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

81 | 306

Address
Offset:

0x000004d8 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit V
A
L

Mode R
W

Initial
Value 0

x0

Bit 31:0 The SW uses this register to indicate the Data Read Address of the RX
message being read to the MH. This address must point to the last word
of the RX message considered in the data container. This bit field is
relevant only when the MH is configured in Continuous mode. The MH
uses this information to ensure enough memory space is available to
write the next message. For an initial start, it is mandatory to set
VAL[1:0] to 0b11, to avoid RX_FQ_RD_ADD_PT7 register to be equal to
the RX_FQ_START_ADDR7 register. Excepted for the initial value, the
address value must always be word aligned (32bit), VAL[1:0] must be set
to 0b00.

1.4.4.2.1.97 TX_FILTER_CTRL0

TX Filter Control register 0

This register is only accessible in write mode if the MH is not busy, see BUSY flag in MH_STS register.

The register is accessible in write access in privileged mode only. This register is protected by a

register bank CRC defined in CRC_REG register.

MH_2436

MH_2437

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

82 | 306

Address
Offset:

0x00000600 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit

IR
Q

_E
N

E
N

C
C

_C
A
N

C
A
N

_F
D

M
O

D
E

M
A
S

K

C
O

M
B

Mode

R
W

R
W

R
W

R
W

R
W

R
W

R
W

Initial
Value

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

Bit 7:0 When COMB[n] =1 the comparison attached to the reference values
(REF_VAL0 and REF_VAL1) or (REF_VAL2 and REF_VAL3) are required to
accept a TX message. This bit field register is only accessible in write
mode if the MH is not busy, see BUSY flag in MH_STS register

Bit 15:8 When MASK[n] =1 the reference values REF_VAL0/1 or REF_VAL2/3 are
combined to define a value (REF_VAL0 or REF_VAL2) and a mask
(REF_VAL1 or REF_VAL3). Otherwise, the comparison uses the
REF_VAL0/1/2/3 bit field as reference value only. This bit field register is
only accessible in write mode if the MH is not busy, see BUSY flag in
MH_STS register

Bit 16 When set to 1 accept on match, otherwise reject on match. This bit field
register is only accessible in write mode if the MH is not busy, see BUSY
flag in MH_STS register

Bit 17 When set to 1 reject CAN-FD messages, otherwise accept them. This bit
field register is only accessible in write mode if the MH is not busy, see
BUSY flag in MH_STS register

Bit 18 When set to 1 reject Classic CAN messages, otherwise accept them. This
bit field register is only accessible in write mode if the MH is not busy,
see BUSY flag in MH_STS register

Bit 19 When set to 1, enable the TX filter for all TX message to be sent. This bit
field register is only accessible in write mode if the MH is not busy, see
BUSY flag in MH_STS register

Bit 20 When set to 1, enable the interrupt tx_filter_irq to be triggered. The
interrupt is triggered when a message is rejected. This bit field register is
only accessible in write mode if the MH is not busy, see BUSY flag in
MH_STS register

1.4.4.2.1.98 TX_FILTER_CTRL1

TX Filter Control register 1

MH_2444

MH_2443

MH_2442

MH_2441

MH_2440

MH_2439

MH_2438

MH_2445

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

83 | 306

This register is only accessible in write mode if the MH is not busy, see BUSY flag in MH_STS register.

The register is accessible in write access in privileged mode only. This register is protected by a

register bank CRC defined in CRC_REG register.

Address
Offset:

0x00000604 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit

F
IE

L
D

V
A
L
ID

Mode R
W

R
W

Initial
Value 0

x0

0
x0

Bit 15:0 When VALID[n] = 1 the reference value defined for the TX filter n is valid.
This bit field register is only accessible in write mode if the MH is not
busy, see BUSY flag in MH_STS register. The valid reference value used is
defined as follow:

VALID[n] is assigned to TX_FILTER_REFVAL0.REF_VAL{n} (n € {0, 1, 2, 3})

VALID[n+4] is assigned to TX_FILTER_REFVAL1.REF_VAL{n} (n € {0, 1, 2, 3})

VALID[n+8] is assigned to TX_FILTER_REFVAL2.REF_VAL{n} (n € {0, 1, 2, 3})

VALID[n+12] is assigned to TX_FILTER_REFVAL3.REF_VAL{n} (n € {0, 1, 2, 3})

Bit 31:16 When FIELD[n] = 1 the TX filter element n is considering SDT, otherwise
VCID, to compare with the reference value defined in
TX_FILTER_REFVAL0/1/2/3. This bit field register is only accessible in
write mode if the MH is not busy, see BUSY flag in MH_STS register. The
reference value to be set is defined as follow:

FIELD[n] is assigned to TX_FILTER_REFVAL0.REF_VAL{n} (n € {0, 1, 2, 3})

FIELD[n+4] is assigned to TX_FILTER_REFVAL1.REF_VAL{n} (n € {0, 1, 2, 3})

FIELD[n+8] is assigned to TX_FILTER_REFVAL2.REF_VAL{n} (n € {0, 1, 2, 3})

FIELD[n+12] is assigned to TX_FILTER_REFVAL3.REF_VAL{n} (n € {0, 1, 2, 3})

1.4.4.2.1.99 TX_FILTER_REFVAL0

TX Filter Reference Value register 0

This register is only accessible in write mode if the MH is not busy, see BUSY flag in MH_STS register.

The register is accessible in write access in privileged mode only. This register is protected by a

register bank CRC defined in CRC_REG register.

MH_2447

MH_2446

MH_2448

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

84 | 306

Address
Offset:

0x00000608 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit
R

E
F
_V

A
L
3

R
E
F
_V

A
L
2

R
E
F
_V

A
L
1

R
E
F
_V

A
L
0

Mode R
W

R
W

R
W

R
W

Initial
Value 0

x0

0
x0

0
x0

0
x0

Bit 7:0 Define the reference value 0. This bit field register is only accessible in
write mode if the MH is not busy, see BUSY flag in MH_STS register

Bit 15:8 Define the reference value 1. This bit field register is only accessible in
write mode if the MH is not busy, see BUSY flag in MH_STS register

Bit 23:16 Define the reference value 2. This bit field register is only accessible in
write mode if the MH is not busy, see BUSY flag in MH_STS register

Bit 31:24 Define the reference value 3. This bit field register is only accessible in
write mode if the MH is not busy, see BUSY flag in MH_STS register

1.4.4.2.1.100 TX_FILTER_REFVAL1

TX Filter Reference Value register 1

This register is only accessible in write mode if the MH is not busy, see BUSY flag in MH_STS register.

The register is accessible in write access in privileged mode only. This register is protected by a

register bank CRC defined in CRC_REG register.

Address
Offset:

0x0000060c Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit

R
E
F
_V

A
L
3

R
E
F
_V

A
L
2

R
E
F
_V

A
L
1

R
E
F
_V

A
L
0

Mode R
W

R
W

R
W

R
W

Initial
Value 0

x0

0
x0

0
x0

0
x0

Bit 7:0 Define the reference value 0. This bit field register is only accessible in
write mode if the MH is not busy, see BUSY flag in MH_STS register

MH_2452

MH_2451

MH_2450

MH_2449

MH_2453

MH_2457

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

85 | 306

Bit 15:8 Define the reference value 1. This bit field register is only accessible in
write mode if the MH is not busy, see BUSY flag in MH_STS register

Bit 23:16 Define the reference value 2. This bit field register is only accessible in
write mode if the MH is not busy, see BUSY flag in MH_STS register

Bit 31:24 Define the reference value 3. This bit field register is only accessible in
write mode if the MH is not busy, see BUSY flag in MH_STS register

1.4.4.2.1.101 TX_FILTER_REFVAL2

TX Filter Reference Value register 2

This register is only accessible in write mode if the MH is not busy, see BUSY flag in MH_STS register.

The register is accessible in write access in privileged mode only. This register is protected by a

register bank CRC defined in CRC_REG register.

Address
Offset:

0x00000610 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit

R
E
F
_V

A
L
3

R
E
F
_V

A
L
2

R
E
F
_V

A
L
1

R
E
F
_V

A
L
0

Mode R
W

R
W

R
W

R
W

Initial
Value 0

x0

0
x0

0
x0

0
x0

Bit 7:0 Define the reference value 0. This bit field register is only accessible in
write mode if the MH is not busy, see BUSY flag in MH_STS register

Bit 15:8 Define the reference value 1. This bit field register is only accessible in
write mode if the MH is not busy, see BUSY flag in MH_STS register

Bit 23:16 Define the reference value 2. This bit field register is only accessible in
write mode if the MH is not busy, see BUSY flag in MH_STS register

Bit 31:24 Define the reference value 3. This bit field register is only accessible in
write mode if the MH is not busy, see BUSY flag in MH_STS register

1.4.4.2.1.102 TX_FILTER_REFVAL3

TX Filter Reference Value register 3

This register is only accessible in write mode if the MH is not busy, see BUSY flag in MH_STS register.

The register is accessible in write access in privileged mode only. This register is protected by a

register bank CRC defined in CRC_REG register.

MH_2456

MH_2455

MH_2454

MH_2458

MH_2462

MH_2461

MH_2460

MH_2459

MH_2463

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

86 | 306

Address
Offset:

0x00000614 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit
R

E
F
_V

A
L
3

R
E
F
_V

A
L
2

R
E
F
_V

A
L
1

R
E
F
_V

A
L
0

Mode R
W

R
W

R
W

R
W

Initial
Value 0

x0

0
x0

0
x0

0
x0

Bit 7:0 Define the reference value 0. This bit field register is only accessible in
write mode if the MH is not busy, see BUSY flag in MH_STS register

Bit 15:8 Define the reference value 1. This bit field register is only accessible in
write mode if the MH is not busy, see BUSY flag in MH_STS register

Bit 23:16 Define the reference value 2. This bit field register is only accessible in
write mode if the MH is not busy, see BUSY flag in MH_STS register

Bit 31:24 Define the reference value 3. This bit field register is only accessible in
write mode if the MH is not busy, see BUSY flag in MH_STS register

1.4.4.2.1.103 RX_FILTER_CTRL

RX Filter Control register

This register is only accessible in write mode if the MH is not busy, see BUSY flag in MH_STS register.

The register is accessible in write access in privileged mode only. This register is protected by a

register bank CRC defined in CRC_REG register.

Address
Offset:

0x00000680 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit

A
N

F
F

A
N

M
F

A
N

M
F
_F

Q

T
H

R
E
S

H
O

L
D

N
B

_F
E

Mode

R
W

R
W

R
W

R
W

R
W

Initial
Value

0
x0

0
x0

0
x0

0
x0

0
x0

Bit 7:0 Define the number of RX filter elements that are defined in the local
memory. When set to 0, all RX messages are accepted and stored in the

MH_2467

MH_2466

MH_2465

MH_2464

MH_2468

MH_2473

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

87 | 306

RX FIFO Queue number defined by ANMF_FQ[3:0]. This bit field register
is only accessible in write mode if the MH is not busy, see BUSY flag in
MH_STS register

Bit 12:8 THRESHOLD defines the latest point in time to wait for the result of the
RX filtering process., Once this limit is reached, the MH starts fetching an
RX descriptor from S_MEM. THRESHOLD value is only used when greater
than 0 and ANFF bit set to 1. See chapter "RX Filter" for an explanation
how to configure THRESHOLD. When the RX filtering is not providing the
result before the threshold of the RX DMA FIFO is reached, the RX
message is sent to the default RX FIFO Queue mentioned in the
ANMF_FQ[2:0] (only enabled when ANFF set to 1). When the level is over
the threshold and the RX filtering result is already known, no action is
taken. Threshold is given in number of word of 32bit. This bit field
register is only accessible in write mode if the MH is not busy, see BUSY
flag in MH_STS register

Bit 18:16 Define the default RX FIFO Queue number (from 0 to 7) when non
matching frames are accepted (ANMF = 1) AND/OR when the threshold
mechanism is active (ANFF = 1). This bit field register is only accessible
in write mode if the MH is not busy, see BUSY flag in MH_STS register

Bit 20 When set to 1, non matching frames are accepted, otherwise rejected. It
is mandatory to have the default RX FIFO Queue defined in the
ANMF_FQ[2:0] bit field, enabled and started (see RX_FQ_CTRL2 and
RX_FQ_CTRL0 registers). This bit field register is only accessible in write
mode if the MH is not busy, see BUSY flag in MH_STS register

Bit 21 When set to 1, frames not filtered in time and over the DMA RX FIFO
level defined in THRESHOLD[4:0], are routed to the default RX FIFO
Queue (defined by the ANMF_FQ[2:0] bit field). It is mandatory to have
the default RX FIFO Queue defined in the ANMF_FQ[2:0] bit field,
enabled and started (see RX_FQ_CTRL2 and RX_FQ_CTRL0 registers).
This bit field register is only accessible in write mode if the MH is not
busy, see BUSY flag in MH_STS register

1.4.4.2.1.104 TX_FQ_INT_STS

TX FIFO Queue Interrupt Status register

MH_2472

MH_2471

MH_2470

MH_2469

MH_2474

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

88 | 306

Address
Offset:

0x00000700 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit

U
N

V
A
L
ID

S
E
N

T

Mode

R
W

R
W

Initial
Value

0
x0

0
x0

Bit 7:0 When SENT[n] = 1, a TX message was sent from the TX FIFO Queue n and
writing a 1 clears the bit

Bit 23:16 When TX FIFO Queue n loads a TX descriptor with VALID = 0, the bit
UNVALID[n] will be set. Writing 1 to UNVALID[n] clears the bit.

1.4.4.2.1.105 RX_FQ_INT_STS

RX FIFO Queue Interrupt Status register

Address
Offset:

0x00000704 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit

U
N

V
A
L
ID

R
E
C

E
IV

E
D

Mode

R
W

R
W

Initial
Value

0
x0

0
x0

Bit 7:0 When RECEIVED[n] = 1, an RX message was received in the RX FIFO
Queue n, writing a 1 clears the bit

Bit 23:16 When RX FIFO Queue n loads an RX descriptor with VALID=0, the bit
UNVALID[n] will be set. Writing 1 to UNVALID[n] clears the bit.

1.4.4.2.1.106 TX_PQ_INT_STS0

TX Priority Queue Interrupt Status register 0

MH_2476

MH_2475

MH_2477

MH_2479

MH_2478

MH_2480

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

89 | 306

Address
Offset:

0x00000708 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit

S
E
N

T

Mode R
W

Initial
Value 0

x0

Bit 31:0 When SENT[n] = 1 TX message was sent from the TX Priority Queue slot
n, writing a 1 clears the bit

1.4.4.2.1.107 TX_PQ_INT_STS1

TX Priority Queue Interrupt Status register 1

Address
Offset:

0x0000070c Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit

U
N

V
A
L
ID

Mode R
W

Initial
Value 0

x0

Bit 31:0 When UNVALID[n] = 1, an invalid RX descriptor is detected while running
the TX Priority Queue slot n. Writing a 1 clears the bit. When set to 1,
the TX Priority Queue slot n is on hold, waiting for the SW to react. As
the TX message is fully defined in system memory before starting the
relevant slot, there should not be any invalid TX descriptor interrupts

1.4.4.2.1.108 STATS_INT_STS

Statistics Interrupt Status register

MH_2481

MH_2482

MH_2483

MH_2484

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

90 | 306

Address
Offset:

0x00000710 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit

R
X
_U

N
S

U
C

C

R
X
_S

U
C

C

T
X
_U

N
S

U
C

C

T
X
_S

U
C

C

Mode

R
W

R
W

R
W

R
W

Initial
Value

0
x0

0
x0

0
x0

0
x0

Bit 0 Counter of TX message transmitted successfully has wrapped, writing a 1
clears the bit

Bit 1 Counter of TX message transmitted unsuccessfully has wrapped, writing
a 1 clears the bit

Bit 2 Counter of RX message received successfully has wrapped, writing a 1
clears the bit

Bit 3 Counter of RX message received unsuccessfully has wrapped, writing a 1
clears the bit

1.4.4.2.1.109 ERR_INT_STS

Error Interrupt Status register

Address
Offset:

0x00000714 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit

D
P

_R
X
_S

E
Q

_E
R

R

D
P

_T
X
_S

E
Q

_E
R

R

D
P

_R
X
_A

C
K

_D
O

_E
R

R

D
P

_R
X
_F

IF
O

_D
O

_E
R

R

D
P

_T
X
_A

C
K
_D

O
_E

R
R

Mode

R
W

R
W

R
W

R
W

R
W

Initial
Value

0
x0

0
x0

0
x0

0
x0

0
x0

Bit 0 When set to 1, a TX acknowledge data overflow is detected, writing a 1
clears the bit

Bit 1 When set to 1, an RX DMA FIFO overflow issue is detected, writing a 1
clears the bit

MH_2488

MH_2487

MH_2486

MH_2485

MH_2489

MH_2494

MH_2493

MH_2492

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

91 | 306

Bit 2 When set to 1, an RX acknowledge data overflow is detected, writing a 1
clears the bit

Bit 3 When set to 1, a TX sequence issue is detected, writing a 1 clears the bit

Bit 4 When set to 1, an RX sequence issue is detected, writing a 1 clears the
bit

1.4.4.2.1.110 SFTY_INT_STS

Safety Interrupt Status register

Address
Offset:

0x00000718 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit

A
C

K
_R

X
_P

A
R

IT
Y
_E

R
R

A
C

K
_T

X
_P

A
R

IT
Y
_E

R
R

M
E
M

_S
F
T
Y
_C

E

M
E
M

_S
F
T
Y
_U

E

R
X
_D

E
S

C
_C

R
C

_E
R

R

R
X
_D

E
S

C
_R

E
Q

_E
R

R

T
X
_D

E
S

C
_C

R
C

_E
R

R

T
X
_D

E
S

C
_R

E
Q

_E
R

R

A
P

_R
X
_P

A
R

IT
Y
_E

R
R

A
P

_T
X
_P

A
R

IT
Y
_E

R
R

D
P

_R
X
_P

A
R

IT
Y
_E

R
R

D
P

_T
X
_P

A
R

IT
Y
_E

R
R

M

E
M

_A
X
I_

R
D

_T
O

_E
R

R

M
E
M

_A
X
I_

W
R

_T
O

_E
R

R

D
P

_P
R

T
_R

X
_T

O
_E

R
R

D
P

_P
R

T
_T

X
_T

O
_E

R
R

D

M
A
_A

X
I_

R
D

_T
O

_E
R

R

D
M

A
_A

X
I_

W
R

_T
O

_E
R

R

Mode

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

Initial
Value

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

Bit 0 When set to 1, an AXI write access timeout issue is detected on DMA
interface, writing a 1 clears the bit

Bit 1 When set to 1, an AXI read access timeout issue is detected on DMA
interface, writing a 1 clears the bit

Bit 2 When set to 1, a TX_MSG timeout issue is detected, writing a 1 clears the
bit

Bit 3 When set to 1, an RX_MSG timeout issue is detected, writing a 1 clears
the bit

Bit 4 When set to 1, an AXI write access timeout issue is detected on local
memory interface, writing a 1 clears the bit

Bit 5 When set to 1, an AXI read access timeout issue is detected on local
memory interface, writing a 1 clears the bit

Bit 6 When set to 1, a TX data parity error is detected on datapath, writing a 1
clears the bit

Bit 7 When set to 1, an RX data parity error is detected on datapath, writing a
1 clears the bit

Bit 8 When set to 1, a TX address pointer parity issue is detected, writing a 1
clears the bit

Bit 9 When set to 1, an RX address pointer parity issue is detected, writing a 1
clears the bit

MH_2491

MH_2490

MH_2495

MH_2511

MH_2510

MH_2509

MH_2508

MH_2507

MH_2506

MH_2505

MH_2504

MH_2503

MH_2502

MH_2501

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

92 | 306

Bit 10 When set to 1, a TX descriptor fetched does not match the one expected,
writing a 1 clears the bit

Bit 11 When set to 1, a TX descriptor has a wrong CRC, writing a 1 clears the
bit

Bit 12 When set to 1, an RX descriptor fetched does not match the one
expected, writing a 1 clears the bit

Bit 13 When set to 1, an RX descriptor has a wrong CRC, writing a 1 clears the
bit

Bit 14 When set to 1, an uncorrectable error is detected on the local memory
interface

Bit 15 When set to 1, a correctable error is detected on the local memory
interface

Bit 16 When set to 1, an acknowledge data parity issue is detected on the TX
path

Bit 17 When set to 1, an acknowledge data parity issue is detected on the RX
path

1.4.4.2.1.111 AXI_ERR_INFO

DMA Error Information

Address
Offset:

0x0000071c Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit

M
E
M

_R
E
S

P

M
E
M

_I
D

D
M

A
_R

E
S

P

D
M

A
_I

D

Mode R

R

R

R

Initial
Value

0
x0

0
x0

0
x0

0
x0

Bit 1:0 On DMA_AXI interface. Define the AXI ID used when a write or read error
response is detected. According to the value, the DMA channel can be
identified and so it is possible to define what's the effect of such issue.

Bit 3:2 On DMA_AXI interface. When set to 0b10, the AXI response is SLVERR.
When set to 0b11, the response is DECERR. By default, set to 0b00
(OKAY)

Bit 5:4 On MEM_AXI interface. Define the AXI ID used when a write or read error
response is detected. According to the value, the DMA channel can be
identified and so it is possible to define what's the effect of such issue.

MH_2500

MH_2499

MH_2498

MH_2497

MH_2496

MH_2794

MH_2793

MH_2512

MH_2514

MH_2513

MH_2658

MH_2657

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

93 | 306

Bit 7:6 On MEM_AXI interface. When set to 0b10, the AXI response is SLVERR.
When set to 0b11, the response is DECERR. By default, set to 0b00
(OKAY)

1.4.4.2.1.112 DESC_ERR_INFO0

Descriptor Error Information 0

If the DESC_ERR_INFO0.ADD[31:16] = 0 and DESC_ERR_INFO1.CRC[8:0], DESC_ERR_INFO1.RX_TX

and DESC_ERR_INFO1.RC[4:0] are all equal to 0, the faulty descriptor is a TX descriptor fetched from

L_MEM

Address
Offset:

0x00000720 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit

A
D

D

Mode R

Initial
Value 0

x0

Bit 31:0 Descriptor address being used when the error is detected

1.4.4.2.1.113 DESC_ERR_INFO1

Descriptor Error Information 1

When the DESC_ERR_INFO1.CRC[8:0], DESC_ERR_INFO1.RX_TX and DESC_ERR_INFO1.RC[4:0] are all

equal to 0, the faulty descriptor is a TX descriptor fetched from L_MEM only if the

DESC_ERR_INFO0.ADD[31:16] = 0

MH_2515

MH_2516

MH_2517

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

94 | 306

Address
Offset:

0x00000724 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit

C
R

C

R
X
_T

X

R
C

P
Q

IN

F
Q

N
_P

Q
S

N

Mode R

R
 R

R

R

R

Initial
Value

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

Bit 4:0 Provide the information regarding the RX/TX FIFO Queue number or the
TX Priority Queue slot having an issue

Bit 7:5 Provide the instance number defined in RX or TX descriptor logged in

Bit 8 Identify which TX queue is impacted, either the TX Priority Queue (PQ set
to 1) or the TX FIFO Queues

Bit 13:9 Provide the information regarding the Rolling Counter defined in RX or TX
descriptor impacted

Bit 15 RX descriptor has an issue (RX_TX set to 1), otherwise the same for a TX
descriptor

Bit 24:16 CRC value defined in the RX or TX descriptor logged in

1.4.4.2.1.114 TX_FILTER_ERR_INFO

TX Filter Error Information

Address
Offset:

0x00000728 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit

F
Q

N
_P

Q
S

F
Q

Mode R

R

Initial
Value

0
x0

0
x0

Bit 0 When set to 1, one of the TX FIFO Queues has triggered the
TX_FILTER_ERR interrupt, otherwise it is a TX Priority Queue slot

MH_2523

MH_2522

MH_2521

MH_2520

MH_2519

MH_2518

MH_2524

MH_2526

MH_2525

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

95 | 306

Bit 5:1 Provide the information of the TX FIFO Queue number or TX Priority
Queue slot number which has triggered the TX_FILTER_ERR interrupt.

1.4.4.2.1.115 DEBUG_TEST_CTRL

Debug Control register

This register is only accessible in write mode if the Test Mode Key sequence has been performed prior

to write. The register is accessible in write access in privileged mode only.

This register is protected by a register bank CRC defined in CRC_REG register.

Address
Offset:

0x00000800 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit

H
D

P
_S

E
L

H
D

P
_E

N

T
E
S

T
_I

R
Q

_E
N

Mode

R
W

R
W

R
W

Initial
Value

0
x0

0
x0

0
x0

Bit 0 When writing 1, enable the control of the interrupt lines using the
INT_TEST0 and INT_TEST1 registers. This bit field register is only
accessible in write mode if the Test Mode Key sequence has been
performed prior to write.

Bit 1 When writing 1, enable the hardware debug port to monitor MH internal
signals. This bit field register is only accessible in write mode if the Test
Mode Key sequence has been performed prior to write.

Bit 10:8 Define the set of signals to be monitored on the HDP[15:0] bus signal
interface. This bit field register is only accessible in write mode if the
Test Mode Key sequence has been performed prior to write.

1.4.4.2.1.116 INT_TEST0

Interrupt Test register 0

This register is only accessible in write mode if the TEST_IRQ_EN bit in DEBUG_TEST_CTRL is set

MH_2527

MH_2530

MH_2529

MH_2528

MH_2531

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

96 | 306

Address
Offset:

0x00000804 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit

R
X
_F

Q
_I

R
Q

T
X
_F

Q
_I

R
Q

Mode

R
W

R
W

Initial
Value

0
x0

0
x0

Bit 7:0 When writing 1 to TX_FQ_IRQ[n], triggers the interrupt line tx_fq_irq[n],
those bits are auto-cleared. This bit field register is only accessible in
write mode if the TEST_IRQ_EN bit in DEBUG_TEST_CTRL is set

Bit 23:16 When writing 1 to RX_FQ_IRQ[n], triggers the interrupt line rx_fq_irq[n],
those bits are auto-cleared. This bit field register is only accessible in
write mode if the TEST_IRQ_EN bit in DEBUG_TEST_CTRL is set

1.4.4.2.1.117 INT_TEST1

Interrupt Test register 1

This register is only accessible in write mode if the TEST_IRQ_EN bit in DEBUG_TEST_CTRL is set

Address
Offset:

0x00000808 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit

T
X
_P

Q
_I

R
Q

S
T
A
T
S

_I
R

Q

S
T
O

P
_I

R
Q

R
X
_F

IL
T
E
R

_I
R

Q

T
X
_F

IL
T
E
R

_I
R

Q

T
X
_A

B
O

R
T
_I

R
Q

R
X
_A

B
O

R
T
_I

R
Q

R
X
_F

IL
T
E
R

_E
R

R

M
E
M

_T
O

_E
R

R

M
E
M

_S
F
T
Y
_E

R
R

R
E
G

_C
R

C
_E

R
R

D
E
S

C
_E

R
R

A
P

_P
A
R

IT
Y
_E

R
R

D
P

_P
A
R

IT
Y
_E

R
R

D
P

_S
E
Q

_E
R

R

D
P

_D
O

_E
R

R

D
P

_T
O

_E
R

R

D
M

A
_C

H
_E

R
R

D
M

A
_T

O
_E

R
R

R
E
S

P
_E

R
R

Mode

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

Initial
Value

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

Bit 1:0 Writing a 1 to the bit field triggers the related interrupt line, this bit is
auto-cleared. This bit field register is only accessible in write mode if the
TEST_IRQ_EN bit in DEBUG_TEST_CTRL is set

Bit 2 Writing a 1 to the bit field triggers the related interrupt line, this bit is
auto-cleared. This bit field register is only accessible in write mode if the
TEST_IRQ_EN bit in DEBUG_TEST_CTRL is set

MH_2533

MH_2532

MH_2534

MH_2554

MH_2553

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

97 | 306

Bit 3 Writing a 1 to the bit field triggers the related interrupt line, this bit is
auto-cleared. This bit field register is only accessible in write mode if the
TEST_IRQ_EN bit in DEBUG_TEST_CTRL is set

Bit 4 Writing a 1 to the bit field triggers the related interrupt line, this bit is
auto-cleared. This bit field register is only accessible in write mode if the
TEST_IRQ_EN bit in DEBUG_TEST_CTRL is set

Bit 5 Writing a 1 to the bit field triggers the related interrupt line, this bit is
auto-cleared. This bit field register is only accessible in write mode if the
TEST_IRQ_EN bit in DEBUG_TEST_CTRL is set

Bit 6 Writing a 1 to the bit field triggers the related interrupt line, this bit is
auto-cleared. This bit field register is only accessible in write mode if the
TEST_IRQ_EN bit in DEBUG_TEST_CTRL is set

Bit 7 Writing a 1 to the bit field triggers the related interrupt line, this bit is
auto-cleared. This bit field register is only accessible in write mode if the
TEST_IRQ_EN bit in DEBUG_TEST_CTRL is set

Bit 8 Writing a 1 to the bit field triggers the related interrupt line, this bit is
auto-cleared. This bit field register is only accessible in write mode if the
TEST_IRQ_EN bit in DEBUG_TEST_CTRL is set

Bit 9 Writing a 1 to the bit field triggers the related interrupt line, this bit is
auto-cleared. This bit field register is only accessible in write mode if the
TEST_IRQ_EN bit in DEBUG_TEST_CTRL is set

Bit 10 Writing a 1 to the bit field triggers the related interrupt line, this bit is
auto-cleared. This bit field register is only accessible in write mode if the
TEST_IRQ_EN bit in DEBUG_TEST_CTRL is set

Bit 11 Writing a 1 to the bit field triggers the related interrupt line, this bit is
auto-cleared. This bit field register is only accessible in write mode if the
TEST_IRQ_EN bit in DEBUG_TEST_CTRL is set

Bit 12 Writing a 1 to the bit field triggers the related interrupt line, this bit is
auto-cleared. This bit field register is only accessible in write mode if the
TEST_IRQ_EN bit in DEBUG_TEST_CTRL is set

Bit 13 Writing a 1 to the bit field triggers the related interrupt line, this bit is
auto-cleared. This bit field register is only accessible in write mode if the
TEST_IRQ_EN bit in DEBUG_TEST_CTRL is set

Bit 14 Writing a 1 to the bit field triggers the related interrupt line, this bit is
auto-cleared. This bit field register is only accessible in write mode if the
TEST_IRQ_EN bit in DEBUG_TEST_CTRL is set

Bit 15 Writing a 1 to the bit field triggers the related interrupt line, this bit is
auto-cleared. This bit field register is only accessible in write mode if the
TEST_IRQ_EN bit in DEBUG_TEST_CTRL is set

Bit 16 Writing a 1 to the bit field triggers the related interrupt line, this bit is
auto-cleared. This bit field register is only accessible in write mode if the
TEST_IRQ_EN bit in DEBUG_TEST_CTRL is set

MH_2552

MH_2551

MH_2550

MH_2549

MH_2548

MH_2547

MH_2546

MH_2545

MH_2544

MH_2543

MH_2542

MH_2541

MH_2540

MH_2539

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

98 | 306

Bit 17 Writing a 1 to the bit field triggers the related interrupt line, this bit is
auto-cleared. This bit field register is only accessible in write mode if the
TEST_IRQ_EN bit in DEBUG_TEST_CTRL is set

Bit 18 Writing a 1 to the bit field triggers the related interrupt line, this bit is
auto-cleared. This bit field register is only accessible in write mode if the
TEST_IRQ_EN bit in DEBUG_TEST_CTRL is set

Bit 19 Writing a 1 to the bit field triggers the related interrupt line, this bit is
auto-cleared. This bit field register is only accessible in write mode if the
TEST_IRQ_EN bit in DEBUG_TEST_CTRL is set

Bit 20 Writing a 1 to the bit field triggers the related interrupt line, this bit is
auto-cleared. This bit field register is only accessible in write mode if the
TEST_IRQ_EN bit in DEBUG_TEST_CTRL is set

1.4.4.2.1.118 TX_SCAN_FC

TX-SCAN first candidates register

This register gives the 4 best candidates evaluated by the TX-Scan. This register gives the first and

second highest priority TX descriptor after a TX-Scan. It provides also the third and fourth candidates

during a TX-Scan, considering the first and second candidates as already defined by a previous TX-

Scan run.

Address
Offset:

0x00000810 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit

F
Q

N
_P

Q
S

N
3

F
Q

_P
Q

3

F
Q

N
_P

Q
S

N
2

F
Q

_P
Q

2

F
Q

N
_P

Q
S

N
1

F
Q

_P
Q

1

F
Q

N
_P

Q
S

N
0

F
Q

_P
Q

0

Mode R

R
 R

R
 R

R
 R

R

Initial
Value

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

Bit 0 The first candidate evaluated by TX-Scan is either a TX Priority Queue
(when set to 1) or a TX FIFO Queue (when set to 0). This bit field is
identical to TX_SCAN_BC.FH_PQ bit register

Bit 5:1 The first candidate is coming from either the TX FIFO Queue number N
(defined by FQN in TX descriptor) or the TX Priority Queue Slot number
M (defined by the PQSN in TX descriptor). The meaning of this bit field
depends on the PQ0. This bit field is identical to
TX_SCAN_BC.FH_FQN_PQSN bit register

MH_2538

MH_2537

MH_2536

MH_2535

MH_2555

MH_2563

MH_2562

MH_2561

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

99 | 306

Bit 8 The second candidate evaluated by TX-Scan is either a TX Priority Queue
(when set to 1) or a TX FIFO Queue (when set to 0). This bit field is
identical to TX_SCAN_BC.SH_PQ bit register

Bit 13:9 The second candidate is coming from either the TX FIFO Queue number
N (defined by FQN in TX descriptor) or the TX Priority Queue Slot
number M (defined by the PQSN in TX descriptor). The meaning of this
bit field depends on the PQ0. This bit field is identical to the
TX_SCAN_BC.SH_FQN_PQSN bit register

Bit 16 The third candidate evaluated by TX-Scan is either a TX Priority Queue
(when set to 1) or a TX FIFO Queue (when set to 0).

Bit 21:17 The third candidate is coming from either the TX FIFO Queue number N
(defined by FQN in TX descriptor) or the TX Priority Queue Slot number
M (defined by the PQSN in TX descriptor). The meaning of this bit field
depends on the PQ2.

Bit 24 The fourth candidate evaluated by TX-Scan is either a TX Priority Queue
(when set to 1) or a TX FIFO Queue (when set to 0).

Bit 29:25 The fourth candidate is coming from either the TX FIFO Queue number N
(defined by FQN in TX descriptor) or the TX Priority Queue Slot number
M (defined by the PQSN in TX descriptor). The meaning of this bit field
depends on the PQ3.

1.4.4.2.1.119 TX_SCAN_BC

TX-SCAN best candidates register

This register gives the first and second highest priority TX descriptor after a TX-Scan

Address
Offset:

0x00000814 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit

S
H

_O
F
F
S

E
T

S
H

_F
Q

N
_P

Q
S

N

S
H

_P
Q

F
H

_O
F
F
S

E
T

F
H

_F
Q

N
_P

Q
S

N

F
H

_P
Q

Mode R

R

R

R

R

R

Initial
Value 0

x0

0
x0

0
x0

0
x0

0
x0

0
x0

Bit 0 First highest priority candidate evaluated by TX-Scan. It is either a TX
Priority Queue (when set to 1) or a TX FIFO Queue (when set to 0).

Bit 5:1 First highest priority candidate coming from either the TX FIFO Queue
number N (defined by FQN in TX descriptor) or the TX Priority Queue

MH_2560

MH_2559

MH_2558

MH_2557

MH_2556

MH_2564

MH_2570

MH_2569

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

100 | 306

Slot number M (defined by the PQSN in TX descriptor). The meaning of
this bit field depends on the FH_PQ.

Bit 15:6 First highest priority candidate offset in multiple of 32bytes (TX
descriptor size). This register is relevant only for the TX FIFO Queue. It
provides the index of the TX descriptor in the TX FIFO Queue which is in
use on the CAN bus. When FH_PQ = 1 it is set to 0.

Bit 16 Second highest priority candidate evaluated by TX-Scan. It is either a TX
Priority Queue (when set to 1) or a TX FIFO Queue (when set to 0).

Bit 21:17 Second highest priority candidate coming from either the TX FIFO Queue
number N (defined by FQN in TX descriptor) or the TX Priority Queue
Slot number M (defined by the PQSN in TX descriptor). The meaning of
this bit field depends on the SH_PQ.

Bit 31:22 Second highest priority candidate offset in multiple of 32bytes (TX
descriptor size). This register is relevant only for the TX FIFO Queue. It
provides the index of the TX descriptor in the TX FIFO Queue which is
about to be sent on the CAN bus. When SH_PQ = 1 it is set to 0.

1.4.4.2.1.120 TX_FQ_DESC_VALID

Valid TX FIFO Queue descriptors in local memory

Address
Offset:

0x00000818 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit

D
E
S

C
_N

C
_V

A
L
ID

D
E
S

C
_C

N
_V

A
L
ID

Mode R
 R

Initial
Value

0
x0

0
x0

Bit 7:0 When DESC_CN_VALID[n] = 1, the current/next TX descriptor for the TX
FIFO Queue n is available in L_MEM

Bit 23:16 When DESC_NC_VALID[n] = 1, the next/current TX descriptor for the TX
FIFO Queue is available in L_MEM

1.4.4.2.1.121 TX_PQ_DESC_VALID

Valid TX Priority Queue descriptors in local memory

MH_2568

MH_2567

MH_2566

MH_2565

MH_2571

MH_2573

MH_2572

MH_2574

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

101 | 306

Address
Offset:

0x0000081c Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit

D
E
S

C
_V

A
L
ID

Mode R

Initial
Value 0

x0

Bit 31:0 When DESC_VALID[n] = 1, the TX descriptor assigned to the slot n in
local memory is valid

1.4.4.2.1.122 CRC_CTRL

CRC Control register

Address
Offset:

0x00000880 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit

S
T
A
R

T

Mode W

Initial
Value

0
x0

Bit 0 Writing a 1 to this bit triggers the HW CRC check of registers. This action

can be done any time for a sanity check

1.4.4.2.1.123 CRC_REG

CRC register

MH_2575

MH_2576

MH_2577

MH_2578

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

102 | 306

Address
Offset:

0x00000884 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit V
A
L

Mode R
W

Initial
Value 0

x0

Bit 31:0 CRC value of all the registers protected by CRC. Once done, a write to
the START bit in the CRC_CTRL register must be done

1.4.4.3 Local Memory Map (L_MEM Map)

To perform the RX filtering and the TX-SCAN, the MH requires a local memory. This local memory,

called L_MEM, is addressable through the MEM_AXI interface.

The MEM_AXI interface can address up to 64KBytes with a 32bit data bus width.

The L_MEM stores all RX filter elements and Header Descriptor for TX FIFO and Priority Queues. When

considering TX FIFO Queues, the next TX Header Descriptor are also stored in L_MEM (used for TX-

SCAN).

1.4.4.3.1 TX Descriptors

The TX FIFO Queue descriptors are organized into the L_MEM starting at the base address defined in

TX_DESC_MEM_ADD.FQ_BASE_ADDR[15:0]. Up to 8 memory locations of size 8*32bit, are required to

hold the TX Header Descriptor of every TX FIFO Queues.

Every TX FIFO Queue, when active, has its current and next descriptor defined in the L_MEM for the

TX-SCAN process. This means, for a given TX FIFO Queue, memory space must be double the size. The

current and the next TX Header Descriptor are used for the TX-SCAN.

The TX Priority Queue descriptors are organized in the L_MEM starting at the base address defined in

TX_DESC_MEM_ADD.PQ_BASE_ADDR[15:0]. Up to 32 memory location of size 8*32bit, is required to

hold the TX Header Descriptors of every slot. As there is only one TX message per slot, there is no

need to allocate more space.

The TX descriptor elements are organized in 32bit word and so any offset would be a multiple of 8.

MH_2579

MH_1001

MH_1817

MH_1002

MH_1003

MH_1004

MH_1005

MH_1006

MH_1008

MH_1009

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

103 | 306

Here below is the memory organization of the TX descriptors considering N TX FIFO Queues and M TX

Priority Queue Slots:

Memory Base

Address
Offset Name

Bit Field Description

FQ_BASE_ADDR[15:0] 0x0+0x40*n

TX FIFO Queue n

(current/next TX

Header Descriptor)

(0<= n <N)

Element 0 TX Header

Descriptor, see TX

descriptor, TX

Message and TX

FIFO Queue chapters

0x4+0x40*n Element 1

0x8+0x40*n Element 2: TS0

0xC+0x40*n Element 3: TS1

0x10+0x40*n Element 4: T0

0x14+0x40*n Element 5: T1

0x18+0x40*n Element 6: T2/TD0

0x1C+0x40*n
Element 7:

TX_AP/TD1

0x20+0x40*n

TX FIFO Queue n

(next/current TX

Header Descriptor)

(0<= n <N)

Element 0 TX Header

Descriptor, see TX

descriptor, TX

Message and TX

FIFO Queue chapters

0x24+0x40*n Element 1

0x28+0x40*n Element 2: TS0

0x2C+0x40*n Element 3: TS1

0x30+0x40*n Element 4: T0

0x34+0x40*n Element 5: T1

0x38+0x40*n Element 6: T2/TD0

0x3C+0x40*n
Element 7:

TX_AP/TD1

PQ_BASE_ADDR[15:0] 0x0+20*m

TX Priority Queue

slot m

(0<= m <M)

Element 0 TX Header

Descriptor, see TX

descriptor, TX

Message and TX

FIFO Queue chapters

0x4+0x20*m Element 1

0x8+0x20*m Element 2: TS0

0xC+0x20*m Element 3: TS1

0x10+0x20*m Element 4: T0

0x14+0x20*m Element 5: T1

0x18+0x20*m Element 6: T2/TD0

0x1C+0x20*m
Element 7:

TX_AP/TD1

As the L_MEM can be shared across several MH, the SW has some flexibility to allocate TX

FIFO/Priority Queue descriptors anywhere and according to the usage of the application. As an

example, if only 4 TX FIFO Queues are required with a TX Priority Queue with 16 slots, the expected

memory size would be half compared to the maximum configuration possible. It is obvious that this

kind of configuration would assume that TX FIFO Queues are continuous, meaning 0, 1, 2 and 3 AND

TX Priority Queue slots 0, 1, ... and 15.

It has to be considered, that if more TX FIFO Queue and TX Priority Queue slots are required, more

memory space would then need to be allocated. As a matter of fact, if the SW enables all TX FIFO

MH_3026

MH_1011

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

104 | 306

Queue and TX Priority Queue slots, the worst configuration would be a memory space configured with

8 TX FIFO Queues and 32 TX Priority Queues.

1.4.4.3.2 RX Filter Elements and Ref/Mask Pairs

The filter elements to be parsed are stored in the L_MEM on a 32bit word. The global setting of the RX

Filter is defined by the RX_FILTER_CTRL register and will apply to all filter elements. Several filter

elements can be defined (where n is from value 0 to 255) with up to m reference/mask pair (where m

is from 0 to 255). The number of elements is defined in the RX_FILTER_CTRL.NB_FE[7:0] bit field

register, the value 0 being assigned to no RX filters. Thus, only 255 RX filter elements can be defined

for RX messages.

The Reference (REFm) and Mask (MSKm) pairs are defined after the full list of RX Filter Elements as

defined below.

Memory Base Address Offset

(1<=n<=255)

(0<=m<=255)

Name

(1<=n<=255)

(0<=m<=255)

Description

BASE_ADDR[15:0] 0x0 FE0 Define the RX filter element 0

- - -

0x4*n-1 FEn-1 Define the RX filter element n-1

BASE_ADDR[15:0]+0x4*n 0x0 REF0 RX Filter Reference value 0

0x4 MSK0 RX Filter Reference mask 0

- - -

0x0+0x8*m REFm RX Filter Reference value m

0x4+0x8*m MSKm RX Filter Reference mask m

As the L_MEM can be shared across several Message Handlers, the SW has some flexibility to allocate

RX filter elements and reference/mask pairs anywhere and according to the usage of the application.

As a memory space of 64Kbyte is addressable, the start address of those elements is defined in the

RX_FILTER_MEM_ADD. BASE_ADDR[15:0] bit field register.

1.4.5 Functional Description

The MH can manage concurrently up to 8 TX FIFO Queues, up to 8 RX FIFO Queues and up to 32 slots

defined in a TX Priority Queue.

The Message Handler is using the principle of linked list to define RX and TX FIFO Queues, as well as

the TX Priority Queue.

MH_1012

MH_1013

MH_3087

MH_1014

MH_1015

MH_50

MH_51

MH_52

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

105 | 306

The TX messages are managed by TX descriptors which define the TX message header information and

the address of its payload. The payload buffer can be defined in any memory location. More

information provided by chapter TX Descriptor.

The RX messages are written to the memory based on the information defined in RX descriptors

and/or configuration registers. The RX message data can be stored in any memory location. More

information provided by chapter RX Descriptor.

The RX FIFO Queue can support Classical CAN, CAN FD, and CAN XL frame format.

The TX FIFO Queues and TX Priority Queue Slots can support Classic, CAN FD and CAN XL frame

format.

The TX Message Handler processes the TX messages while the RX Message Handler takes care of the

RX messages.

Both share the Descriptor Message Handler to get their TX and RX descriptors respectively. This

module also updates the status at the TX/RX FIFO Queues or TX Priority Queue when a transfer is

completed. A dedicated sub-module in the Descriptor Message Handler is assigned to the TX path and

one for the RX path, they can run concurrently.

The RX/TX FIFO Queues and TX Priority Queue can be fully defined in E_MEM when the overall system

latency is low. This means, RX message data, TX message payload data and TX/RX descriptors can be

allocated to the same external memory. For high system latency, it is essential that the RX/TX

descriptors are fetched from SRAM (low access time) while still leaving the RX message data and TX

message payload data in the E_MEM.

The selection of the highest priority TX message and the RX message filtering are done locally using

the L_MEM. Therefore, the highest priority message to be sent is defined in a shorter time.

Regarding the RX filtering, the RX filter elements are fetched from the L_MEM to reduce the

processing time to accept or reject an RX message before a new one comes in.

The MH can drive only one Protocol Controller using the TX_MSG and RX_MSG interfaces.

1.4.5.1 TX Message Handler

The TX Message Handler is in charge of TX FIFO Queues and TX Priority Queue management.

Therefore, the TX Message Handler requests the TX descriptors whenever required, arbitrates the TX

descriptors according to their IDs and selects the high priority TX message to be sent to the PRT.

Finally, once a TX descriptor is selected and the PRT is winning the arbitration on CAN bus, it fetches

the payload data assigned to that descriptor from the S_MEM.

The internal arbitration on TX descriptors is called TX-SCAN to avoid a conflict with the arbitration

done on the CAN bus.

A TX filter is put in place to ensure only the relevant TX messages will be sent through the CAN bus.

MH_53

MH_54

MH_1452

MH_1453

MH_1446

MH_55

MH_56

MH_1814

MH_57

MH_58

MH_59

MH_60

MH_2252

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

106 | 306

1.4.5.1.1 Block Diagram

XCAND_MH_TX

(TX MESSAGE HANDLER)

TX_DMA_CHANNEL

TX_MESSAGE _CONTROLLER

SEQUENCER

TX DMA FIFO

CAN TD0

CAN TD1

CAN TD15

TX PRT BUFFER

CAN TDn

TX_MSG

INTERFACE
TX_MSGTX CHANNEL

INTERFACE

TX_QUEUE_CONTROLLER

CONTROLLER

TX QUEUE
CONTROLLER

MEMORY INTERFACE

ARBITER

TX DESC ARBITER BUFFER A

CAN T0

CAN T1

CAN T2 / CAN TD0

TX Payload Addr / TD1

DMA Info Ctrl 1

TX CANDIDATE BUFFER B

PRIORITY | FQN/PQSN | PQ | IN

DMA Info Ctrl 2

TX CANDIDATE BUFFER A

PRIORITY | FQN/PQSN | PQ | IN

FROM

XCAND_MH_MEM_CTRL

MEM CTRL

INTERFACE

TO

XCAND_DESC_MH

TX DESC REQ
INTERFACE

TX ACK

INTERFACE

FROM
XCAND_MH_DMA

T
X

 M
E

S
S

A
G

E

C
O

N
T

R
O

L
L
E

R

IN
T

E
R

F
A

C
E

TX DMA PRT BUFFER

TX DMA PTR

TX DESC FQ PTR BUFFER

TX DESC FQ PTR 1

TX DESC FQ PTR N- 1

TX DESC FQ PTR 0

TX DESC PTR BUFFER

TX DESC PTR

TX DMA
INTERFACE

MH_SM_07_TX _TXDES
C_SRC_CHECK

TX DESC VALID BUFFER

TX DESC VALID

TX DESC ARBITER BUFFER B

CAN T0

CAN T1

CAN T2 / CAN TD0

TX Payload Addr / TD1

DMA Info Ctrl 1

DMA Info Ctrl 2

MUX

TX ACK DESC PTR BUFFER

TX ACK DESC PTR

TX PAYLOAD BUFFER

TX Payload Addr

TX Payload Size

ENABLE

MH_SM _11_TX_DP_
PARITY_CHECK

MH_SM _14_TX_TXMSG _

TO_CHECK

CLK

RESET_N

XCAND_MH_REG
INTERRUPTS

MH_SM _09_TX_AP _
PARITY_CHECK

TX MESSAGE FILTER

Buffer with parity

Address Pointers

FROM
XCAND_MH_DESC

CLK_AXI

HOST_AXI

TX DESC ADD FOR ACK PTR BUFFER

TX DESC ADD FOR ACK PTR

TX ACK DESC BUFFER

DMA Info Ctrl 1

DMA Info Ctrl 2

CAN TS0

CAN TS1

TX ACK DATA BUFFER

TX ACK DATA

Figure: TX Message Handler block diagram

1.4.5.1.2 Block Description

Several blocks are used to manage the TX message TX FIFO Queues and the TX Priority Queue

1.4.5.1.2.1 TX DMA CHANNEL INTERFACE:

This block interfaces the DMA MESSAGE HANDLER to send read commands to the S_MEM. It will also

buffer payload data in a local TX DMA FIFO before transferring the data to the TX MESSAGE

CONTROLLER. The size of the payload data for a CAN frame can be in the range of 8 bytes for

Classical CAN and up to 2048 bytes for CAN XL.

Every TX descriptor defines the size of the data to be executed. Only one DMA transfer request is

performed per TX descriptor. Every information related to the data transfer is set by the TX MESSAGE

CONTROLLER. The TX DMA FIFO size is set to two maximum burst lengths to allow continuous

MH_61

MH_62

MH_63

MH_64

MH_65

MH_66

MH_67

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

107 | 306

execution of data transfers. As soon as the TX DMA FIFO has enough space to load a new burst, the

DMA MESSAGE HANDLER will initiate a new fetch from the S_MEM. Only one data transfer can be

executed at a time. As a matter of fact, when the first defined data transfer is finished, meaning the

data to be read are inside the TX DMA FIFO, a second data transfer can be started. The buffered data

from the first transfer are used for continuous data transfer to the TX MESSAGE CONTROLLER while

waiting for the second DMA transfer.

Only the address pointer ADDR_PTR[31:0] and the SIZE[10:0] (size of the transfer) are required to

fetch the payload data.

The other data transfer parameters are static and defined using control registers.

The TX DMA CHANNEL can accept only one data transfer definition at a time in the TX DMA PTR

BUFFER, so one data transfer can be performed at a time.

1.4.5.1.2.2 TX MESSAGE CONTROLLER:

This block is in charge of sequencing the TX message data to the TX_MSG interface. Two sources of

data are used to build the TX message. The first data comes from the TX descriptor, which contains

the header and the first payload words of the CAN frame. This TX descriptor comes from the TX

QUEUE CONTROLLER and is provided by the ARBITER.

Once the TX descriptor is executed, the address pointer defined in the descriptor is used to fetch

further payload data from the S_MEM thanks to the TX DMA CHANNEL.

The TX MESSAGE CONTROLLER is in charge of managing new TX descriptors when several descriptors

are used for one TX message. Any new TX message to be sent is solely provided by the ARBITER.

As all TX messages are managed by the TX MESSAGE CONTROLLER, once a message is sent

successfully or not to the PRT, an acknowledge descriptor is provided to the DESCRIPTOR MESSAGE

HANDLER to be written back to the first descriptor of the TX message. If some issues are detected,

the current message is cancelled and all the traffic from the S_MEM is aborted. Once done, a new TX

message must be already provided by the ARBITER.

The PRT signalizes via ENABLE whether it requires message handling or not. When this signal goes

low, the MH must stop its current activities. This means the TX FIFO Queues and TX Priority Queue are

put on hold as well as all the relevant traffic from and to the S_MEM must be aborted.

1.4.5.1.2.3 TX QUEUE CONTROLLER:

This block manages the TX FIFO Queues and the TX Priority Queue as well as the TX-SCAN. As soon as

a TX FIFO Queue is started, and/or a TX Priority Queue slot is valid, the TX QUEUE CONTROLLER will

fetch the appropriate TX descriptor from the S_MEM. Those descriptors are stored in the L_MEM for

further processing. The TX descriptors (only part of it) are fetched from the L_MEM and analyzed to

find out the TX message having the highest priority.

The one selected is stored locally for the TX MESSAGE CONTROLLER to be read. This block computes

the address to read the next TX descriptor for every running TX FIFO Queue, once the current TX

MH_68

MH_69

MH_70

MH_71

MH_2589

MH_72

MH_73

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

108 | 306

message is selected by the TX-SCAN. The block also manages the active slot from the TX Priority

Queue when a new one being declared.

All relevant information for the TX MESSAGE CONTROLLER is provided by this block.

The TX filter uses configuration registers to select between TX messages to be sent to the CAN bus

and TX messages to be discarded.

When the TX-Scan (selection of the TX message with the highest priority) is done, the selected TX

descriptor is read from the L_MEM. To ensure that it is the one already selected, some TX descriptor

bit fields are checked against the expected value stored locally by the TX-Scan. In case one of the bit

fields, listed below, does not match a TX_DESC_REQ_ERR signal is triggered to the system:

• The IN (instance number)

• The FQN (TX FIFO queue number) if PQ = 0

• The PQSN (TX Priority Queue slot number) if PQ = 1

• The PQ (Priority Queue flag)

• The Priority Value assigned to the TX message

1.4.5.2 RX Message Handler

The RX Message Handler is in charge of the RX FIFO Queues. Every RX FIFO Queue uses a linked list of

RX descriptors to identify the exact location in S_MEM to store the message. The RX Message Handler

requests the RX descriptor whenever required, e.g., when RX filter result of an accepted incoming RX

Message becomes available.

The RX filter identifies any incoming RX messages and determines whether it must be rejected (not

stored) or accepted (stored into one of the RX FIFO queues, defined by the RX filter).

1.4.5.2.1 Block Diagram

MH_2784

MH_2786

MH_3152

MH_3153

MH_3154

MH_3155

MH_153

MH_154

MH_155

MH_156

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

109 | 306

XCAND_MH_RX
(RX MESSAGE HANDLER)

RX_DMA_CHANNEL

RX_MESSAGE_CONTROLLER

RX_MSG
INTERFACE

FILTER

RX FILTER BUFFER

CAN R0

CAN R1

FILTER ELEMENT BUFFER

FEn

SEQUENCER

R
X

 P
R

T
 B

U
F

F
E

R

C
A

N
 R

n RX_MSG

REFi

MSKi

RX_QUEUE_CONTROLLER

RX CHANNEL
INTERFACE

RX DMA FIFO

CAN RD0

CAN RD1

CAN RD2

CAN RD31

R
X

 M
E
S

S
A

G
E

IN

T
E

R
F

A
C

E

RX ACK DESC BUFFER

DMA Info Ctrl1

RX buffer Addr

CONTROLLER

RX DESC FQ PTR BUFFER

RX QUEUE
CONTROLLER

MEMORY INTERFACE

CAN TS0

CAN TS1

RX DESC BUFFER

DMA Info Ctrl1

RX buffer Addr

TO

XCAND_MH_DMA

TO

XCAND_MH_DESC

FROM

XCAND_MH_MEM_CTRL

MEM CTRL

INTERFACE

TO

XCAND_MH_DESC

RX DESC REQ

INTERFACE
RX DESC

INTERFACE

RX ACK

INTERFACE

CAN R2

RX DESC FQ PTR 0

RX DESC FQ PTR M-1

RX DESC PTR BUFFER

RX DESC PTR

RX DMA

INTERFACE

FROM
XCAND_MH_DESC

RX ACK DESC PTR BUFFER

RX ACK DESC PTR

MH_SM_08_RX _AP_
PARITY_CHECK

ENABLE

MH_SM_15_RX _RXMSG_
TO_CHECK

M
U

X

FIDX and BLK
BUFFER

FDIX_BLK

CLK

RESET_N

XCAND_MH_REG

INTERRUPTS

RX DC FQ PTR BUFFER

RX DESC FQ PTR 0

RX DESC FQ PTR M-1

RX DC PTR BUFFER

RX DC PTR Buffer with parity

Address Pointers

Parity added on dataRX DMA PTR BUFFER

RX DMA PTR

FROM
XCAND_MH_DESC

CLK_AXI

HOST_AXI

REFi+1

MSKi+1

Figure: RX Message Handler block diagram

1.4.5.2.2 Block Description

Several blocks are used to manage the RX FIFO Queues:

1.4.5.2.2.1 RX DMA CHANNEL

This block interfaces the DMA MESSAGE HANDLER to send write commands to the S_MEM. It will also

buffer the RX message data in a local RX DMA FIFO before sending the data to the S_MEM. The size of

the payload data for a CAN frame can be the size of 8 bytes for Classical CAN and up to 2048 bytes for

CAN XL.

Every RX descriptor of the same RX FIFO Queue has a fixed buffer size to hold data. The size of the

overall transfers is stored locally to identify how many descriptors are required for the RX message

and what the size of each DMA data transfer is.

As a matter of fact, when the RX message exceeds the maximum buffer pointed by the current

descriptor, one or several DMA data transfers are executed. In other words, there are as many DMA

data transfer as RX descriptors per RX message.

Only the address pointer ADDR_PTR[31:0] and the SIZE[10:0] (size of the transfer) are required to

fetch the payload data. The other data transfer parameters are static and are defined in control

registers.

The RX DMA CHANNEL can accept only one data transfer definition in the RX DMA PTR BUFFER, so

one data transfer can be performed at a time.

MH_157

MH_158

MH_159

MH_160

MH_161

MH_162

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

110 | 306

1.4.5.2.2.2 RX MESSAGE CONTROLLER

This block is in charge of sequencing the RX message data from the RX_MSG interface to the

RX_DMA_CHANNEL and to filter the incoming messages (refer to the RX Filter chapter for more

details).

The RX message is managed by the RX MESSAGE CONTROLLER. Once a message is received

successfully, an acknowledge descriptor is provided to the DESCRIPTOR MESSAGE HANDLER to be

written back to the first descriptor of the RX message. This first descriptor is used along the process

of receiving a message and is the only one which is acknowledged and holds the header data.

If an error was detected, the current message will be cancelled and the storage to the S_MEM will be

aborted. Once done, a new RX message can be processed, and the RX descriptors of the previously

aborted message are reused.

To avoid duplication of buffers, the data from the PRT is stored directly into the RX DMA FIFO without

waiting for the result of the filter. Once the result of the filter is known (RX message accepted or not

accepted), the CAN data being received is stored in the S_MEM or discarded.

The PRT signalizes via ENABLE whether it is active and requires message handling or not. When this

signal is going low, the MH stops current activities. This means that the RX FIFO queues are put on

hold as well as the traffic from and to the S_MEM will be aborted.

1.4.5.2.2.3 RX QUEUE CONTROLLER

This block manages the RX FIFO Queues and keeps track of the write pointers to use for each of them.

As soon as an RX FIFO Queue is started, the RX QUEUE CONTROLLER is allowed to request

descriptors from the DESCRIPTOR MESSAGE HANDLER. The descriptor to be used is stored into the

local RX DESC BUFFER and is the result of a request to the DESCRIPTOR MESSAGE HANDLER when

the RX FIFO Queue is identified by the Filter. This block also computes the address to read the next

RX descriptor for every RX FIFO Queues running, once used. All the relevant information to write data

to the S_MEM or to generate an interrupt when receiving a message is provided to the RX MESSAGE

CONTROLLER.

In case that several descriptors are required for one message, the RX QUEUE CONTROLLER can

request the next descriptor from the DESCRIPTOR MESSAGE HANDLER as soon as RX MESSAGE

CONTROLLER has taken over the current descriptor.

1.4.5.3 Descriptor Message Handler

The Descriptor Message Handler is in charge of providing RX descriptors from the S_MEM, used by the

RX MESSAGE HANDLER, respective TX descriptors used by the TX MESSAGE HANDLER.

As soon as an RX or a TX message was completed, it provides the acknowledge data and message

header to the dedicated first descriptor in the S_MEM.

MH_163

MH_164

MH_165

MH_2591

MH_166

MH_167

MH_237

MH_238

MH_239

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

111 | 306

This sub-module only manages RX/TX descriptors fetched and acknowledged on request from the TX

MESSAGE HANDLER and the RX MESSAGE HANDLER.

As the RX and TX and Acknowledge paths are fully concurrent, it would be up to the DMA controller

(managing the traffic from/to the S_MEM) to decide which request to serve first.

As the CAN bus is unidirectional, there should be a low collision rate on the AXI bus interface on the

same channel.

The parallel processing of TX/RX descriptors will decouple functions between the two paths. Such

approach relaxes the constraints on those two concurrent data flows, considering use cases where

both are active at the same time. Furthermore, while receiving a CAN Frame, TX descriptors can be

fetched from the S_MEM on request or while executing RX FIFOs. This approach lowers the complexity

of use case management.

Regarding the acknowledge of descriptors, the same strategy is used, i.e., the acknowledge path does

not interfere with the RX and TX data path.

Any configuration register is defined into the main register bank of the Message Handler.

1.4.5.3.1 Block Diagram

MH_240

MH_241

MH_242

MH_243

MH_244

MH_245

MH_246

MH_247

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

112 | 306

XCAND_MH_DESC

(DESCRIPTOR MESSAGE HANDLER)

ACK_DESC_DMA_CHANNEL

ACK DESC DMA FIFO

CAN TX/RX ACK 0

CAN TX/RX ACK 1

ACK DESCRIPTOR
CONTROLLER

INTERFACE

ACK CHANNEL
INTERFACE

CAN TX /RX ACK 3

TX_DESC_DMA_CHANNEL

TX DESC
CHANNEL

INTERFACE

TX DESCRIPTOR
CONTROLLER

INTERFACE

TX_DESC_CONTROLLER

TX DESC MEMORY

INTERFACE

TX

DESCRIPTOR
CONTROLLER

RX_DESC_CONTROLLER

RX

DESCRIPTOR
CONTROLLER

ACK_DESC_CONTROLLER

ACK
DESCRIPTOR

CONTROLLER

MH_SM_01_DESC_TXDESC
_CRC_CHECK

MH_SM_03_DESC_RXD

ESC_CRC _CHECK

RX DESC BUFFER

CAN RX DESC 0

CAN RX DESC 1

TX DESC DMA FIFO

TX DESC0

TX DESC7

RX_DESC_DMA_CHANNEL

RX DESC DMA FIFO

RX DESC
CHANNEL

INTERFACE

RX DESCRIPTOR
CONTROLLER

INTERFACE

CAN RX DESC 0

CAN RX DESC 1

XCAND_MH_REG

TO XCAND_MH_RX

FROM

XCAND_MH_TX

TO

XCAND_MH_DMA

FROM

XCAND_MH_DMA

FROM

XCAND_MH_DMA

TO

XCAND_MH_MEM_CTRL

FROM XCAND_MH_RX

RX DESC REQ
INTERFACE

RX DESC
INTERFACE

RX ACK
INTERFACE

TX DESC REQ

INTERFACE

TX ACK

INTERFACE

MEM CTRL

INTERFACE

ACK DESC BUFFER

CAN TX /RX ACK 0

CAN TX /RX ACK 1

CAN TX /RX ACK 3

ACK DESC PTR BUFFER

ACK DESC PTR

IN & FQN & RC

IN & (FQN/PQSN) & RC & PQ

ACK DESC DMA
INTERFACE

RX DESC DMA
INTERFACE

TX DESC DMA
INTERFACE

MH_SM _04_DESC_RXDESC _

SRC_CHECK

MH_SM _02_DESC _TXDESC_
SRC_CHECK

CLK

RESET_N

INTERRUPTS

Buffer with parity

Address Pointers

RX DESC PTR

MH_SM_08_RX _AP_
PARITY_CHECK

MH_SM_09_TX_AP _

PARITY_CHECK

MH_SM _05_DESC_RX
ACK _PARITY _CHECK

MH_SM_06_DESC_TX

ACK _PARITY _CHECK

RX REQ CMD BUFFER

TX REQ CMD BUFFER

CLK_AXI

HOST_AXI

TX DESC CRC BUFFER

RX DESC CRC

RX DESC PTR

CAN TX /RX ACK 2

MH_SM _08_RX _AP_
PARITY _CHECK

MH_SM_09_TX_AP _
PARITY_CHECK

Figure: Descriptor Message Handler block diagram

1.4.5.3.2 Block Description

1.4.5.3.2.1 TX_DESC_CONTROLLER

This block stores read descriptor requests from the TX_MESSAGE_HANDLER and sends them to the

TX_DESC_DMA_CHANNEL. It can accept up to two requests when there is a need to pre-fetch TX

descriptors.

To provide the request to the TX_DESC_DMA_CHANNEL, the block sends only the address of the TX

descriptor ADDR_PTR[31:0] (the size of the TX descriptor is always identical). Other control signals

manage the handshaking. On top of those information, an abort signal is provided to stop the current

data transfer on the DMA channel, when requested by the TX_MESSAGE_HANDLER.

Once a TX descriptor is provided by the TX_DESC_DMA_CHANNEL, several checks are performed to

ensure the correctness of the descriptor and its validity. These checks are (in the order):

MH_248

MH_249

MH_250

MH_251

MH_252

MH_254

MH_2923

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

113 | 306

• The VALID bit in the TX descriptor is checked to ensure descriptor is valid. The following

check is performed only if the VALID bit equals 1

• A CRC check is done on the TX descriptor. In case a CRC error is detected, a CRC error is

triggered to the system using the TX_DESC_REQ_ERR signal. The following check is

performed only if there is no CRC issue

• The instance number IN[2:0], either the TX FIFO Queue number FQN[3:0] or the TX FIFO

Queue slot number PQSN[4:0], the rolling counter RC[4:0] bit fields of the TX descriptor

and the Priority Queue bit PQ are checked against the expected values from the request

(see TX descriptor definition chapter for more detail on those bit fields). In case that one

of the bit fields does not match, a TX_DESC_REQ_ERR signal is triggered to the system

Whatever the result of the checks done on the TX descriptor, it is always written to the L_MEM. Doing

so, the wrong TX descriptor can be read from the L_MEM, if required for debug purpose.

To store the TX descriptor, a write access is performed to the L_MEM through the memory controller

interface. As the size of the TX descriptor to write does not change, the number of words to be written

is identical for all descriptors. As soon as a TX descriptor is checked and no issue is identified, it is

written to the L_MEM and a notification is sent to the TX_MESSAGE_HANDLER.

The TX descriptor from the S_MEM is stored locally for filtering. Once stored and accepted, it is

written to the L_MEM. In case a Header Descriptor is rejected, the TX_FILTER_IRQ is triggered to the

system. The TX MESSAGE CONTROLLER is notified that the requested TX descriptor is rejected and

will not be provided. Refer to the TX Filter chapter for a detailed description.

1.4.5.3.2.2 TX_DESC_DMA_CHANNEL

This block interfaces the DMA_CONTROLLER to send read commands to the S_MEM. It will also hold

the TX descriptors in a local DMA FIFO before sending the data to the TX_DESC_CONTROLLER when

available and complete. As the TX descriptor has a fixed size (8 words of 32bit), the data transfers,

that are executed by the DMA channel, will always be the same. Only the address pointer

ADDR_PTR[31:0] is required to fetch the TX descriptor. The other transfer parameters are static and

are stored in control registers. As the received FIFO can accept only one TX descriptor, only one data

transfer can be performed at a time. There is no check performed by this block as everything is done

by the TX_DESC_CONTROLLER which hold the read request definition. More details provided by the

DMA CONTROLLER chapter.

1.4.5.3.2.3 RX_DESC_CONTROLLER

This block is in charge of storing read descriptor requests from the RX_MESSAGE_HANDLER and to

send them to the RX_DESC_DMA_CHANNEL. It is possible to accept up to two requests when there is a

need to pre-fetch RX descriptors for large payload data defined in RX messages.

MH_255

MH_256

MH_2927

MH_257

MH_258

MH_259

MH_260

MH_261

MH_262

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

114 | 306

To provide the request to the RX_DESC_DMA_CHANNEL, this block sends the address of the RX

descriptor ADDR_PTR[31:0]. Other control signals manage the handshaking. On top of those

information, an ABORT signal is provided to stop the current data transfer on the DMA channel when

requested by the RX_MESSAGE_HANDLER.

Once an RX descriptor is provided by the RX_DESC_DMA_CHANNEL, several checks are performed to

ensure the correctness of the descriptor. These checks are (in the order):

• The VALID bit in the RX descriptor is checked to ensure descriptor is valid. The following

check is performed only if the VALID bit equals 0

• A CRC check is done on the RX descriptor. When the CRC is valid, the RX descriptor is sent

to the RX_MESSAGE_HANDLER, otherwise a CRC error is triggered to the system using the

RX_DESC_REQ_ERR signal. The following check is performed only if there is no CRC issue

• The instance number IN[2:0], the RX FIFO Queue number FQN[3:0] and the rolling counter

RC[4:0] bit fields of the RX descriptor are checked against the expected value mentioned in

the request (see RX descriptor definition chapter for more detail on those bit fields). In

case one of the bit fields does not match, an RX_DESC_REQ_ERR signal is triggered to the

system

1.4.5.3.2.4 RX_DESC_DMA_CHANNEL

This block interfaces the DMA_CONTROLLER to send read commands to the S_MEM. It will also hold

the RX descriptors in a local DMA FIFO before sending the data to the RX_DESC_CONTROLLER when

available and complete. As the RX descriptors have the same size (2 words of 32bit), the data transfer

to be executed by the DMA channel will always be the same. Only the address pointer

ADDR_PTR[31:0], to fetch the RX descriptor, is required. The other data transfer parameters are static

and defined using control registers. As the received FIFO can accept only one RX descriptor, only one

data transfer can be performed at a time. There is no check performed by this block as everything is

done by the RX_DESC_CONTROLLER holding the read request definition. For more details on the

DMA_CONTROLLER interface, see the relevant chapter.

1.4.5.3.2.5 ACK_DESC_CONTROLLER:

This block manages the RX_MESSAGE_HANDLER and TX_MESSAGE_HANDLER request when an RX or

TX descriptor being executed needs to be acknowledged. As soon as the RX_MESSAGE_HANDLER has

completed its execution using one RX descriptor, the relevant information (transfer status and errors

mainly) of that transfer must be sent back to the first descriptor. To do so, the

RX_MESSAGE_HANDLER and TX_MESSAGE_HANDLER will send a request to the

ACK_DESC_CONTROLLER to write acknowledge data into the respective Header Descriptor.

The ACK_DESC_CONTROLLER can only accept data when the ACK DESC DMA FIFO has enough data to

store it. If this DMA FIFO cannot accept the data, it will hold any request from either

RX_MESSAGE_HANDLER and/or TX_MESSAGE_HANDLER. Acknowledge data are build and stored in

MH_263

MH_2926

MH_2925

MH_264

MH_265

MH_266

MH_267

MH_268

MH_269

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

115 | 306

the RX_MESSAGE_HANDLER and TX_MESSAGE_HANDLER. This way, any updates along the reception

or transmission of a TX message will automatically be done locally on the sub-module. As the CAN bus

is unidirectional, there should be no conflict regarding RX and TX descriptors being acknowledged at

the same time. The only exception would appear when the PRT is set in loopback mode. As soon as

the ACK DESC DMA FIFO in ACK_DESC_DMA_CHANNEL provides the right FIFO level to receive one

burst of data, the ACK_DESC_CONTROLLER will write those data and will push the address pointer of

those data. Despite that RX and TX acknowledge requests may not occur at the same time, the higher

priority is always given to the RX path. The ACK_DESC_CONTROLLER will always start writing the

acknowledge data (always 4x32bit) to the DMA FIFO in ACK_DESC_DMA_CHANNEL whatever the

request source is, either TX_MESSAGE_HANDLER or RX_MESSAGE_HANDLER. At last, it will write the

address pointer of that descriptor triggering at the same time a new DMA data transfer. The option, to

provide a priority signal to define the urgency of the writing, exists.

1.4.5.3.2.6 ACK_DESC_DMA_CHANNEL

This block interfaces the DMA_CONTROLLER to send write commands to the S_MEM. It also holds

bursts to be sent over the interconnect into a local DMA FIFO before triggering the

DMA_CONTROLLER to send it to the S_MEM.

As the acknowledge data for RX and TX descriptors has a fixed size (4 words of 32bit), the data

transfer to be executed by the DMA channel will always be the same. Only the address pointer to

write the burst is required as well as a priority signal to manage the urgency of the request. The other

data transfer parameters are statics and are provided by control registers. As the transmit DMA FIFO

can accept only one burst, one transfer can be performed at a time. More details are provided by the

chapter DMA_CONTROLLER.

1.4.5.4 DMA Message Handler

The DMA CONTROLLER reads and writes bursts of data from and to the S_MEM through its AXI4

master interface DMA_AXI (compliant to AMBA 4 ARM Ltd protocol, see [5]). In that sense the DMA

CONTROLLER manages request commands from sub-module that is in charge of sending/receiving

TX/RX messages as well as fetching RX/TX descriptors.

It is in charge of providing data to the sub-module which is responsible to send TX messages (TX

MESSAGE HANDLER) as well as to the sub-module that manages the RX and TX descriptors

(DESCRIPTOR MESSAGE HANDLER). It manages all data from a received RX message (RX MESSAGE

HANDLER) as well as writes back information into RX/TX descriptors when required (DESCRIPTOR

MESSAGE HANDLER).

1.4.5.4.1 Block Diagram

MH_270

MH_271

MH_272

MH_367

MH_368

MH_369

MH_370

MH_371

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

116 | 306

XCAND_MH_DMA

(DMA MESSAGE HANDLER)

XCAND_MH_TX

(TX MESSAGE
HANDLER)

XCAND_MH_RX
(RX MESSAGE

HANDLER)

RX_MSG

DMA_AXI

XCAND_MH_REG

XCAND_MH_DESC

(DESC MESSAGE
HANDLER)

TX_MSG

INTERRUPTS

CLK

RESET_N

DMA write channel 0

DMA write channel 1

DMA read channel 0

DMA read channel 1

DMA read channel 2

DMA_WRITE_CH_CORE

DMA_READ_CH_CORE

CLK_AXI

MH_SM_12_DMA_CH_
IF_CHECK

MH_SM_10_RX_DP_

PARITY_CHECK
(Only valid for RX

message data)

P
a

ri
ty

 a
d

d
e

d
 o

n
 d

a
ta

HOST_AXI

Figure: DMA Message Handler block diagram

1.4.5.4.2 Block Description

The DMA build in the XCAND_MH_DMA block has a static configuration, once the SW has written the

registers, they must not be changed excepted if all DMA channels are stopped.

An arbitration process will take place to define which request command is to be served first.

As several concurrent read and write accesses can be foreseen, refer to

AXI_PARAMS.AR_MAX_PEND[1:0] and AXI_PARAMS.AR_MAX_PEND[1:0] bit field registers.

To maximize the AXI throughput, whatever the number of data transfer to be done, the DMA Controller

ensures the usage of the maximum burst length whenever possible. To do so, the DMA Controller is

always trying to generate a burst length for the first transfer to get an aligned address burst size for

the next data to be transferred (maximize the usage of maximum burst size for transfers).

MH_372

MH_373

MH_374

MH_375

MH_376

MH_2623

MH_377

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

117 | 306

The RESP_ERR[1:0] interrupts are used to trigger the system for any bus error, when reading or

writing the S_MEM and L_MEM.

Before starting any transfer, a DMA read/write channel must be enabled. The

TX_FQ_CTRL2.ENABLE[n], RX_FQ_CTRL2.ENABLE[n] and TX_PQ_CTRL2.ENABLE[n] bit field registers

are used to identify when the DMA channels are required. If none of those enable bit are set to 1, no

data transfer can occur.

The DMA is intended to:

• Write all received RX message data coming from the PRT to the S_MEM at a defined address

location (specified into RX descriptors). This traffic does concern only the RX MESSAGE

HANDLER

• Write the acknowledge data of TX messages back to the relative TX descriptor. This traffic is

owned by the DESCRIPTOR MESSAGE HANDLER

• Write the acknowledge data of RX messages back to the appropriate RX descriptor. This

traffic is owned by the DESCRIPTOR MESSAGE HANDLER

• Read TX descriptors where the TX message header is defined with some other relevant

information like the address pointer of the payload data. This traffic is owned by the

DESCRIPTOR MESSAGE HANDLER

• Read RX descriptors according to the RX message being filtered to identify which location to

write the received data. This traffic is owned by the DESCRIPTOR MESSAGE HANDLER

• Read TX message payload data from the S_MEM when the corresponding message header is

winning the CAN bus arbitration. This traffic does concern only the TX MESSAGE HANDLER

1.4.5.4.2.1 DMA_WRITE_CH_CORE:

This block is in charge of:

• Writing data to the S_MEM and to have those transfers compliant to the AXI4 AMBA protocol

• Providing the appropriate write burst length for a maximum system bus efficiency according

to the number of data to be sent

• Reading the relevant amount of data from a defined DMA write channel through the read

FIFO interface

• Arbitrating among the different DMA write commands of those channels

• Stopping any AXI data transfer any time without locking the AXI write system bus interface

The DMA_WRITE_CH_CORE stores and sends all write commands to the S_MEM. As soon as a write

command is granted, the required data is fetched from the read FIFO interface of the corresponding

channel and is written to the AXI write system bus interface.

MH_378

MH_379

MH_380

MH_381

MH_382

MH_383

MH_384

MH_385

MH_386

MH_387

MH_388

MH_389

MH_390

MH_391

MH_392

MH_393

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

118 | 306

A classic read FIFO interface is provided at the block interface to avoid embedded data FIFOs. This

kind of implementation allows to scale the data FIFO assigned to any DMA write channel without

having to modify the DMA controller. Only the level of the FIFO to be read must be provided to ensure

a proper handshaking. The read FIFO interface is defined as a 32bit data bus width with a read

enabled and a FIFO level to ensure enough data are present in the FIFO to perform a new burst.

Once a command is received from a DMA write channel, the arbitration process takes care of the right

command to execute.

Any write command selected by the arbiter must only be issued by a sub-module if all the relevant

data of the burst are present in the local FIFO of the sub-module.

As long as the DMA FIFO level is not empty, AXI write commands will be issued according to the write

outstanding value set in the AXI_PARAMS.AW_MAX_PEND[1:0] bit register.

It is not allowed to insert wait state in between data read from the FIFO interface.

1.4.5.4.2.2 DMA_READ_CH_CORE:

This block is in charge of:

• Reading data from the S_MEM and to have those transfers compliant to the AXI4 AMBA

protocol

• Providing the appropriate read burst length for a maximum system bus efficiency according

to the number of data to be fetched

• Writing the relevant amount of data to a defined DMA read channel through the write FIFO

interface

• Arbitrating among the different DMA read command of those channels

• Stopping any AXI data transfer any time without locking the AXI read system bus interface

The DMA_READ_CH_CORE stores and sends all read commands to the S_MEM. As soon as a read

command is granted, the required data is fetched from the AXI write system bus interface and is

written to the read FIFO interface of the corresponding channel.

A classic write FIFO interface is provided at the block interface to avoid embedded data FIFOs. This

kind of implementation allows to scale the data FIFO assigned to any DMA read channel without

having to modify the DMA controller. Only the level of the FIFO to be written must be provided to

ensure a proper handshaking. The write FIFO interface is defined as a 32bit data bus width with a

write enabled and a FIFO level to ensure enough storage is present in the FIFO to receive a new burst.

A read command from the DMA read channel would need to define all the relevant information to

describe the read data transfer to be executed.

Once a command is received from a DMA read channel, the arbitration process will take care of the

right command to be executed.

MH_394

MH_395

MH_396

MH_3041

MH_397

MH_398

MH_399

MH_400

MH_401

MH_402

MH_403

MH_404

MH_405

MH_406

MH_407

MH_408

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

119 | 306

As long as the DMA FIFO level is not full, AXI read commands will be issued according to the read

outstanding value set in the AXI_PARAMS.AR_MAX_PEND[1:0] bit register.

It is not allowed to insert wait state in between data written to the FIFO interface.

1.4.5.4.3 Data Transfer Mode

Several data transfer type can be defined:

No Transfer: When the register AXI_PARAMS.AW_MAX_PEND[1:0] is set to 0, no AXI write transfer is

executed. There is the option to have the MH fully active and running without the need of an external

memory to receive RX messages. Acknowledges will not be written, so this mode is considered for

debug purpose only. When the AXI_PARAMS.AR_MAX_PEND[1:0] is set to 0, no read access is

performed and without TX/RX descriptor read, the MH will be waiting forever.

The AXI_PARAMS.AW_MAX_PEND[1:0] and AXI_PARAMS.AR_MAX_PEND[1:0] can set the maximum

number of read/write outstanding commands on the DMA_AXI interface.

1.4.5.4.4 Data Transfer Description

1.4.5.4.4.1 Address bus

The DMA is able to address up to 4Gbyte memory space (DMA_AXI_AWADDR[31:0] and

DMA_AXI_ARADDR[31:0]) but in order to support SoC with bus addresses higher than 32bit, the

AXI_ADD_EXT register can be used to extend the AXI address up to 64bit. The AXI addresses for read

and write transaction is then build as:

• DMA_AXI_AWADDR[63:0] = AXI_ADD_EXT[31:0] & address from embedded MH DMA engine

(32bit)

• DMA_AXI_ARADDR[63:0] = AXI_ADD_EXT[31:0] & address from embedded MH DMA engine

(32bit)

1.4.5.4.4.2 Burst size

The maximum number of bytes to transfer in each data transfer is fixed and set to 4. Any read or write

transfer always uses 32bit.

When considering TX message for instance, the payload data being defined as byte must be 4byte

aligned when read from the S_MEM.

For the RX message, if data to be written to S_MEM is not properly aligned (CAN frames are byte

aligned) padding bytes are added to complete the last word (4byte). The padding bytes are set to

0x00.

As a consequence, the write strobe signals are not managed by the DMA CONTROLLER as all 4 bytes

are always written.

MH_409

MH_410

MH_439

MH_440

MH_441

MH_1812

MH_443

MH_444

MH_445

MH_446

MH_447

MH_448

MH_449

MH_450

MH_451

MH_452

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

120 | 306

1.4.5.4.4.3 Burst length

The DMA CONTROLLER for the AXI read and write transfers supports INCR burst lengths from 1 to 8,

considering an AXI 32bit data bus width. The DMA_AXI_AWLEN[3:0] and DMA_AXI_ARLEN[3:0] are

sized to support a maximum burst length of 16 despite only 8 is possible. To be fully compliant with

the AXI4 AMBA protocol [5] the DMA_AXI_AWLEN[7:4] and DMA_AXI_ARLEN[7:4] are considered as

0b0000.

The DMA Controller will always try to align its burst address to make full benefit of the maximum

allowed burst length. The address burst value must always be 32byte aligned to ensure the maximum

burst length (8x32bit). Whatever the data transfer mode, the DMA engine will reduce (if needed) the

size of the first burst to align the address to the maximum burst length. Depending on the amount of

data to be transferred, the last burst can be shorter.

It is important to optimize the access to the S_MEM, especially if a low number of data transfers is

performed. As an example, if a data transfer of 12x32bit needs to be executed and the start address is

32byte aligned, it will result in two burst 8x32bit and 4x32bit. In case the start address is not aligned,

and the worst scenario is assumed, this can lead to 3 bursts 3x32bit and 8x32bit and 1x32bit or

2x32bit and 8x32bit and 2x32bit or 1x32bit and 8x32bit and 3x32bit.

In case a high latency is expected in the SoC, it is essential to limit the number of burst and to make

sure that, whenever it is possible, to align the start address to the maximum burst size.

The DMA CONTROLLER provides a variable burst length of data, according to the sub-module

command requests.

The burst lengths from/to sub-modules connected to the DMA CONTROLLER are defined based on the

data type of information to be used.

Here below are the expected burst lengths from/to the sub-modules:

• TX MESSAGE HANDLER: This sub-module does read the TX payload data from the S_MEM

through the DMA read channel 2. The maximum burst length is limited to 8x32bit. There is

no write access from this sub-module.

• RX MESSAGE HANDLER: This sub-module writes the RX message data to the S_MEM through

the DMA write channel 1. The maximum burst length is limited to 8x32bit. There is no read

access from this sub-module.

• DESCRIPTOR MESSAGE HANDLER: This sub-module performs a fixed burst read of 8x32bit

to read TX descriptors from the S_MEM through the DMA read channel 2. A fixed burst

length of 2x32bit is used instead to read RX descriptors through the DMA read channel 0.

To acknowledge any transfer from and to the CAN bus, a fixed burst length of 4x32bit is

written back to either the RX descriptor for RX message or to the TX descriptor for TX

message.

MH_453

MH_454

MH_455

MH_456

MH_457

MH_458

MH_459

MH_460

MH_461

MH_462

MH_463

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

121 | 306

1.4.5.4.4.4 Outstanding

In order to support read and write outstanding commands and to limit the FIFO size, the maximum

burst length is limited to 8x32bit. The maximum outstanding expected at the DMA_AXI interface is

programmable, see AXI_PARAMS.AW_MAX_PEND[1:0] and AXI_PARAMS.AR_MAX_PEND[1:0] bit field

register. Up to 3 outstanding can be specified for read and write transactions. Even if set to the

maximum value, the maximum number of outstanding performed by the MH will depend on many

parameters like the system latency, the CAN Bus bit rate, the MH and PRT clock ratio, ...

1.4.5.4.4.5 Burst type

The only burst type supported is the burst incrementing INCR.

The WRAP/FIXED burst type is not supported.

1.4.5.4.4.6 Multi-region

The DMA controller AXI4 system bus interface does not support multiple region interfaces, see [5] for

more details.

1.4.5.4.4.7 Memory attributes

The memory attributes for the read or write accesses to memory are Normal, Non-modifiable (Non-

cacheable in AXI3) and Non-bufferable. No read-allocate nor No Write-allocate are expected on this

interface and would be set to 0.

This means DMA_AXI_AWCACHE[3:0] and DMA_AXI_ARCACHE[3:0] are set to 0b0000.

As a reminder, Non-bufferable means (See [5] for more details):

• The write response must be obtained from the destination.

• Read data must be obtained from the destination.

• Transactions are Non-modifiable

• Read and write transactions from the same ID to addresses that overlap must remain

ordered.

As a reminder, Non-modifiable means:

• A Non-modifiable transaction must not be split into multiple transactions or merged with

other transactions.

• In a Non-modifiable transaction, the parameters AxADDR, AxSIZE, AxLEN, AxBURST and

AxPROT must not be changed.

1.4.5.4.4.8 Access permissions

It is considered that any access is always defined as Data, Non-secure and the operating mode is

Unprivileged, see [5] for more details. As a consequence, the DMA_AXI_ARPROT[1] and

DMA_AXI_AWPROT[1] are set to 1. Those settings cannot be changed by SW. This means

MEM_AXI_A(W/R)PROT[2:0] is set to 0b010.

MH_464

MH_465

MH_496

MH_497

MH_498

MH_466

MH_467

MH_468

MH_469

MH_3012

MH_3013

MH_3014

MH_3015

MH_3016

MH_3017

MH_3018

MH_3019

MH_485

MH_486

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

122 | 306

1.4.5.4.4.9 Transaction ID

The DMA CONTROLLER generates the ID of every burst access based on the number of channels

defined. It provides a way to track on the system bus which DMA channel is doing the access at any

time.

For the AXI read interface, the DMA_AXI_ARID[1:0] defines the channel number as follow:

2’b00 => RX descriptor fetch from S_MEM

2’b01 => TX descriptor fetch from S_MEM

2’b10 => TX data payload read from S_MEM

For the AXI write interface, the DMA_AXI_AWID[0] defines the channel number as follow:

1’b0 => TX/RX descriptor acknowledge to S_MEM

1’b1 => RX message data write (payload and header) to S_MEM

1.4.5.5 TX Descriptor

TX descriptors are used for the TX FIFO Queues and the TX Priority Queue. They can be fetched with

one AXI burst, as the overall size is only 8x32bit.

Many bit fields are common, but some are different between TX FIFO Queue and TX Priority Queue.

Details are provided in the following table.

Further information is provided by the chapter TX Message Header Definition.

1.4.5.5.1 TX Priority Queue Descriptor Overview

Table: TX Priority Queue Descriptor Overview

TX PRIORITY

QUEUE

DESCRIPTOR

31 30 29 28 27 26 25 [24:16] 15 14 13 12 11 [10:9] [8:4] 3 2 1 0

DMA Info Ctrl

1 V
A
L
ID

H
D

 (
se

t
to

 1
)

(M
e
ss

a
g
e
 H

e
a
d
e
r)

W
R

A
P

N
E
X
T
 (

se
t

to
 0

)

IR
Q

(I
n
te

rr
u
p
t)

P
Q

 (
se

t
to

 1
)

N
o
t

U
se

d
 (

se
t

to
 0

)

C
R

C
[8

:0
]

P
Q

S
N

[4
:0

]

(P
ri

o
ri

ty
 Q

u
e
u
e
 S

lo
t

N
u
m

b
e
r)

N
o
t

U
se

d
 (

se
t

to
 0

)

R
C

4
[:

0
]

(R
o
ll

in
g
 C

o
u
n
te

r)

S
T
S

[3
:0

]

(T
X
 M

e
ss

a
g
e
 S

ta
tu

s)

DMA Info Ctrl

2

N
o
t

U
se

d
 (

se
t

to
 0

)

P
L
S

R
C

S
IZ

E
[9

:0
]

(T
X
 B

u
ff

e
r

si
ze

)

IN
[2

:0
]

(I
n
st

a
n
c
e
 N

u
m

b
e
r)

N
o
t

U
se

d
 (

se
t

to
 0

)

T
D

O
[9

:0
]

(s
e
t

to
 0

)

N
o
t

U
se

d
 (

se
t

to
 0

)

TS0
TS0[31:0]

(TimeStamp[31:0])

MH_487

MH_488

MH_489

MH_490

MH_491

MH_492

MH_493

MH_494

MH_495

MH_507

MH_508

MH_3051

MH_3071

MH_3056

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

123 | 306

TS1
TS1[31:0]

(TimeStamp[63:32])

T0
T0[31:0]

(TX Message Header Information)

T1
T1[31:0]

(TX Message Header Information)

T2 / TD0
T2[31:0] / TD0[31:0]

(TX Message Header Information / First TX Data Payload)

TX_AP / TD1
TX_AP[31:0] / TD1[31:0]

(TX Payload Data Address Pointer / Second TX Data Payload)

Managed by SW and

HW

1.4.5.5.2 TX FIFO Queue Descriptor overview

Table: TX FIFO Queue Descriptor Overview

TX FIFO

QUEUE

DESCRIPTOR

31 30 29 28 27 26 25 [24:16] 15 14 13 12 11 10 9 [8:4] 3 2 1 0

DMA Info Ctrl

1 V
A
L
ID

H
D

 (
se

t
to

 1
)

(M
e
ss

a
g
e
 H

e
a
d
e
r)

W
R

A
P

N
E
X
T
 (

se
t

to
 0

)

IR
Q

(I
n
te

rr
u
p
t)

P
Q

 (
se

t
to

 0
)

E
N

D

C
R

C
[8

:0
]

F
Q

N
[3

:0
]

(F
IF

O
 Q

u
e
u
e
 N

u
m

b
e
r)

N
o
t

U
se

d
 (

se
t

to
 0

)

N
o
t

U
se

d
 (

se
t

to
 0

)

R
C

4
[:

0
]

(R
o
ll

in
g
 C

o
u
n
te

r)

S
T
S

[3
:0

]

(T
X
 M

e
ss

a
g
e
 S

ta
tu

s)

DMA Info Ctrl

2

N
o
t

U
se

d
 (

se
t

to
 0

)

P
L
S

R
C

S
IZ

E
[9

:0
]

(T
X
 B

u
ff

e
r

si
ze

)

IN
[2

:0
]

(I
n
st

a
n
c
e
 N

u
m

b
e
r)

N
o
t

U
se

d
 (

se
t

to
 0

)

N
H

D
O

[9
:0

]
(s

e
t

to
 1

)

N
o
t

U
se

d
 (

se
t

to
 0

)

TS0
TS0[31:0]

(TimeStamp[31:0])

TS1
TS1[31:0]

(TimeStamp[63:32])

T0
T0[31:0]

(TX Message Header Information)

T1
T1[31:0]

(TX Message Header Information)

MH_3068

MH_3055

MH_3070

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

124 | 306

T2 / TD0
T2[31:0] / TD0[31:0]

(TX Message Header Information / First TX Data Payload)

TX_AP / TD1
TX_AP[31:0] / TD1[31:0]

(TX Payload Data Address Pointer / Second TX Data Payload)

Managed by SW and

HW

1.4.5.5.3 TX Descriptor Description

Element

Number

Bit

field
Name

Managed

by

Description/Constraints

0 [31] VALID SW/MH Valid: The SW must set this bit to 1 to define a TX

descriptor is valid for the MH. When the descriptor has

been fully used, the MH will clear this bit when writing

the acknowledge data information back to this

descriptor. This update occurs only when the HD bit is

set to 1.

In case the descriptor is fetched when this bit is set to

0, an interrupt TX_FQ_IRQ is triggered to the system for

the TX FIFO queue n having this descriptor.
[30] HD SW only Must be set to 1

[29] WRAP SW only Wrap: When set to 1 the next message descriptor is the

one declared at the initial start address of the TX FIFO

Queue (First Descriptor). This bit provides a way to the

SW to keep the next TX message continuous in a

memory buffer if less space is available at the end of a

data container
[28] NEXT SW only Must be set to 0

[27] IRQ SW only Interrupt: when set to 1 an interrupt is triggered to the

system when the descriptor execution is complete,

meaning when the TX message has been sent to the CAN

bus
[26] PQ SW only TX Priority Queue: when set to 1, the TX descriptor

belongs to the TX Priority Queue

TX FIFO Queue: must be set to 0
[25] END SW only For the TX FIFO Queue: when set to 1 the TX FIFO

Queue defined is ending, it means, it is set as inactive.

Once done, the TX FIFO Queue can be reprogrammed

and started

MH_3052

MH_2965

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

125 | 306

Element

Number

Bit

field
Name

Managed

by

Description/Constraints

For the TX Priority Queue: must be set to 0
[24:16] CRC[8:0] SW only CRC: this CRC is computed by the SW for the current TX

descriptor. It must consider all elements assuming this

bit field as set to 0. Any CRC error is triggering an

interrupt to the system. The CRC is not evaluated if the

MH_SFTY_CTRL.TX_DESC_CRC_EN bit is set to 0.
[15:12] FQN[3:0] SW only TX FIFO Queue: define the TX FIFO Queue number

allocated to this TX descriptor. Despite being set to

4bit, only the FQN[2:0] bit range is used
PQSN[4:1] SW only TX Priority Queue: define the TX FIFO Queue slot

number allocate to this descriptor
[11] reserved SW only

TX FIFO Queue: must be set to 0

PQSN[0] SW only

TX Priority Queue: define the TX FIFO Queue slot

number allocate to this descriptor

[10:9] Not used SW only Must be set to 0

[8:4] RC[4:0] SW only Rolling Counter: use to track the order of TX descriptor

fetched when a TX FIFO Queue or a TX Priority Queue

slot is running.

TX FIFO Queue: The first TX descriptor in a TX FIFO

Queue must have the RC[4:0] set to 5’b00000 (before

first start). This value must be incremented for every

new TX descriptor up to 5’b11111 and then back to

5’b00000, and so on. If a TX FIFO Queue is circular,

meaning the FIFO restarts at the first TX descriptor, the

RC[4:0] must be updated accordingly based on the

RC[4:0] defined and executed in the last TX descriptor

of the TX FIFO Queue.

TX Priority Queue: This bit field must be set to 5’b00000

as the default value for the TX Header descriptor

defined in the slot.

[3:0] STS[3:0] MH only Status: gives the status of the TX message transmitted.

The MH writes back only the Header Descriptor (HD bit

set to 1) for status report. The SW must always set it to

0

0’b0000: none

0’b0001: message sent successfully

0’b0010: message not sent after a number of trials

0’b0011: message skipped due to HFI

0’b0100: message rejected by TX filter

0’b0101: reserved

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

126 | 306

Element

Number

Bit

field
Name

Managed

by

Description/Constraints

0’b0110: reserved

0’b0111: reserved

0’b1000: reserved

0’b1001: reserved

0’b1010: reserved

0’b1011: reserved

0’b1100: reserved

0’b1101: reserved

0’b1110: reserved

0’b1111: message acknowledge data with parity error

1

[31:27] Not Used SW only Must be set to 0

[26] PLSRC SW only Payload Source: This bit provides to the MH the

information about the need to fetch payload data in the

data container when executing only a TX Header

Descriptor.

When set to 1: the TX descriptor is attached to a data

container which would need to be accessed and the bit

field SIZE[9:0] defines the number of TX data to send

for this descriptor. For CAN XL, as no payload data can

be defined in TX descriptor, this bit is always set to 1

for CAN XL. For CAN FD, this bit is set to 1 when the

payload data is greater than 4bytes.

When set to 0: the payload data defined in the data

container are not required. Therefore, the TX descriptor

includes all data payload. For the Classical CAN, all

payload data are always included, this bit must always

be set to 0. In case of CAN FD, it would be set to 0 only

when the payload data is less or equal to 4bytes.

Nevertheless, the bit field SIZE[9:0] still defines the

number of payload data to send per TX descriptor

[25:16] SIZE[9:0] SW only Define the buffer size in word (32bit) for the given TX

descriptor to transmit to the PRT. As an example, a

payload from 1 to 4 bytes requires SIZE to be set to 1.

As only 32bit read accesses are performed the buffer

size containing the payload must be 32bit aligned.

When set to 0, there is no payload data attached to the

TX descriptor (only valid for Classical CAN/CAN FD

without payload or a Classical CAN remote frame)

For CAN XL no data is defined in TX descriptor. The MH

replies only on the address pointer defined in element 7

to fetch payload data from S_MEM.

For CAN FD:

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

127 | 306

Element

Number

Bit

field
Name

Managed

by

Description/Constraints

• SIZE > 1: The copy of the first data payload

(aligned on 32bit) is required in element 6. The

address pointer in element 7 is used to fetch the

payload data from S_MEM.

• SIZE = 1: The copy of the first data payload

(aligned on 32bit) is required in element 6. In

case it is less than 4bytes, just pad with 0s. The

address pointer in element 7 is not used.

Nevertheless, it is required to have it set to the

address of the payload data in S_MEM

• SIZE=0: Elements 7 and 6 are not used

•

[15:13] IN[2:0] SW only Instance Number: define the X_CAN instance number

using that descriptor. This bit field is relevant if several

X_CAN are running concurrently. It provides a way to

detect descriptor fetch issue between instances. The

value defined must be equal to the one defined in the

MH_CFG.INST_NUM bit field register.

[12] Not Used SW only Must be set to 0

[11:2] TDO[9:0] SW only For the TX Priority Queue: must be set to 0.

NHDO[9:0] SW only For the TX FIFO Queue: must be set to 1.

[2:0] Not used SW only Must be set to 0

2 [31:0] TS0[31:0] MH only Timestamp 0: LSB of the 64bits timestamp of the

successfully sent TX message (only valid when HD bit is

set to 1)"

3 [31:0] TS1[31:0] MH only Timestamp 1: MSB of the 64bits timestamp of the

successfully sent TX message (only valid when HD bit is

set to 1)"

4

[31:0] T0[31:0] SW only Define the TX message header information, see TX

message header definition chapter

5 [31:0] T1[31:0] SW only Define the TX message header information, see TX

message header definition chapter

6 [31:0] TD0[31:0] SW only Classical CAN and CAN FD: define the first payload of

the TX message

T2[31:0] SW only

CAN XL: Defined the TX message header information,

see TX message header definition chapter

7 [31:0] TD1[31:0] SW only Classical CAN with payload greater equal to 4byte:

define the last payload data of the TX message for the

Classical CAN (in case payload data is greater than

4bytes).

TX_AP[31:0] SW only

CAN XL and CAN FD (with payload greater than 4bytes):

Address pointer to fetch the TX message payload data

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

128 | 306

Element

Number

Bit

field
Name

Managed

by

Description/Constraints

for CAN FD and CAN XL frames. For CAN FD frames with

more than 4 bytes this bit field is, nevertheless,

mandatory. As the address pointer must be 32bit

aligned the two LSB will not be considered and so must

be set to 0 all time. In case the TX_AP is not used it

must be set to 0

Table: TX Descriptor description

Here is the list of the required elements for the various TX descriptor definitions to be managed by the

SW or the MH:

SW to write information

to MH

SW to read information from

MH

Element

Number
Header Descriptor Header Descriptor

0 Mandatory Mandatory

1 Mandatory Mandatory

2 NA Mandatory

3 NA Mandatory

4 Mandatory NA

5 Mandatory NA

6 Mandatory NA

7 Optional NA

Table: TX Descriptor Element managed by SW

MH to write information to

SW

MH to read information

from SW

Element

Number
Header Descriptor Header Descriptor

0 Mandatory Mandatory

1 Mandatory Mandatory

2 Mandatory NA

3 Mandatory NA

4 NA Mandatory

5 NA Mandatory

6 NA Mandatory

7 NA Optional

MH_509

MH_511

MH_2966

MH_512

MH_2967

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

129 | 306

Table: TX Descriptor Element Managed by MH

1.4.5.5.4 TX Descriptor CRC Computation

A dedicated CRC is computed for every TX descriptor. When a CRC error is detected, the DESC_ERR

interrupt signal is triggered. This way, the data transfer setting and description, up to the DMA engine,

are fully protected.

The CRC covers all the relevant data, meaning the 247bit data (8*32bit - 9) in the TX descriptor

considering the CRC bit field in the descriptor as equal to 0b000000000. The CRC is part of the

Element Number 0.

The CRC (CRC-9_167) is computed assuming the following elements in sequence:

Element Number 0[31:25] & 0b000000000 & Element Number 0[15:0]

Element Number 1[31:0]

Element Number 2[31:0] set to 32’b0

Element Number 3[31:0] set to 32’b0

Element Number 4[31:0]

Element Number 5[31:0]

Element Number 6[31:0]

Element Number 7[31:0]

The Koopman representation of the polynomial CRC-9_167 is used to protect TX descriptors:

CRC-9_167 = (x9 +x7 +x6 +x3 +x2 +x +1) ‡ (CRC polynomial in implicit "+1" hex format, meaning the

trailing "+1" is omitted from the polynomial number)

Using the MH_SFTY_CTRL.TX_DESC_CRC_EN bit register, the SW can decide to disable this check for

all the TX descriptors fetched from S_MEM or L_MEM.

Here below is the pseudo code to compute the CRC for a TX/RX descriptor:

The word_table[] is the array of 32bit element defined previously (in the order they are listed):

static bit[8:0] rem9 = 9'h1FF;

static bit[8:0] rem9_old = 9'h1FF;

static bit[8:0] poly = 9'h167;

static bit[8:0] crc9;

// This algorithm is indirect

// initialize CRC shift register

rem9 = 9'h1FF;

foreach (word_table[i]) begin

 for (int j = 31; j >= 0; j--) begin

MH_514

MH_516

MH_517

MH_518

MH_519

MH_520

MH_521

MH_522

MH_523

MH_524

MH_525

MH_526

MH_527

MH_528

MH_529

MH_2781

MH_2782

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

130 | 306

 // to decide whether reduction with polynomial will be required based on MSB before shift

 rem9_old = rem9;

 // shift out MSB of CRC

 rem9 = rem9 << 1;

 rem9[0] = word_table[i][j];

 // perform reduction if required

 if (rem9_old[8]) rem9 = rem9 ^ poly;

 end

end

// processing 9 0s more

repeat(9) begin

 // to decide whether reduction with polynomial will be required based on MSB before shift

 rem9_old = rem9;

 // shift out MSB of CRC

 rem9 = rem9 << 1;

 rem9[0] = 0;

 // perform reduction if required

 if (rem9_old[8]) rem9 = rem9 ^ poly;

end

crc9 = rem9;

1.4.5.5.5 TX Descriptor Errors

When a TX descriptor error is detected, the relevant information is logged in the DESC_ERR_INFO1

register. Furthermore, the source address of the faulty TX descriptor is logged in the

DESC_ERR_INFO0 register. This would help the SW to identify potential root causes when such error

occurs. The DESC_ERR_INFO1.RX_TX bit register is set to 0 when a TX descriptor gets an error.

1.4.5.6 TX Message Header Definition

The TX descriptor contains i.e., the TX message header. The header data structure depends on the

CAN Frame Format (Classical CAN, CAN FD, CAN, XL) to be used for this message on the CAN Bus. It

can be controlled by the header bits R0.FDF, R0.XLF and R0.XTD. The following tables describe the

three data structures used for the headers.

Table: Classical CAN TX Header definition

MH_2937

MH_2938

MH_530

MH_531

MH_2909

MH_2911

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

131 | 306

Tn Bits Name Description/Constraints

T0 [31] FDF FD Format

[30] XLF XL Format

[29] XTD Extended Identifier

[28:18] BaseID [28:18] Base ID

[17:0] ExtID [17:0] Extended ID

T1

[31] Reserved Not Applicable

[30] FIR Fault Injection Request

[29:27] Reserved Not Applicable

[26] RTR Remote Transmission Request

[25:20] Reserved Not Applicable

[19:16] DLC[3:0] Data Length Code

[15:0] Reserved Not Applicable

Note: Classical CAN frames (CBDF, CEDF, CBRF, CERF) require T0.FDF = 0 and T0.XLF = 0. The header

consists of T0 and T1.

Table: CAN FD TX Header definition

Tn Bits Name Description/Constraints

T0 [31] FDF FD Format

[30] XLF XL Format

[29] XTD Extended Identifier

[28:18] BaseID [28:18] Base ID

[17:0] ExtID [17:0] Extended ID

T1

[31] Reserved Not Applicable

[30] FIR Fault Injection Request

[29:27] Reserved Not Applicable

[26] Must be set to 0 Not Applicable

[25] BRS Bit Rate Switch

[24:21] Reserved Not Applicable

[20] ESI Error State Indicator

[19:16] DLC[3:0] Data Length Code

[15:0] Reserved Not Applicable

Note: CAN FD frames (FBDF, FEDF) require T0.FDF = 1 and T0.XLF = 0. The header consists of T0 and

T1.

Table: CAN XL TX Header definition

Tn Bits Name Description/Constraints

T0 [31] FDF FD Format

[30] XLF XL Format

MH_2910

MH_2912

MH_2914

MH_2913

MH_2915

MH_2917

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

132 | 306

Tn Bits Name Description/Constraints

[29] XTD Extended Identifier

[28:18] Priority ID[28:18] Priority identifier

[17] RRS Remote Request Substitution

[16] SEC Simple Extended Content

[15:8] VCID[7:0] Virtual CAN Network ID

[7:0] SDT[7:0] SDU Type

T1

[31] Reserved Not Applicable

[30] FIR Fault Injection Request

[29:27] Reserved Not Applicable

[26:16] DLC-XL[10:0] Data Length Code with CAN XL encoding

[15:0] Reserved Not Applicable

T2 [31:0] AF[31:0] Acceptance Field

Note: CAN XL frames (XLFF) require T0.FDF = 1, T0.XLF = 1 and T0.XTD = 0. The header consists of T0,

T1 and T2.

1.4.5.7 RX Descriptor

The RX descriptor definition for the RX FIFO is defined in table below. Only 4x32bit are required to

define an RX descriptor. As a matter of fact, the overall RX descriptor can be fetched with one burst.

Some bit field elements are defined in a separate table for the sake of simplicity.

1.4.5.7.1 RX FIFO Queue Descriptor Overview (Normal Mode)

Table: RX FIFO Queue Descriptor Overview (Normal Mode)

RX FIFO QUEUE

DESCRIPTOR

(Normal Mode)

31 30 29 28 27 26 25
[24:16

]
[15:12] [11:9] [8:4] [3:0]

DMA info Ctrl 1

V
A
L
ID

H
D

 (
M

e
ss

a
g
e
 H

e
a
d
e
r)

N
o
t

U
se

d
 (

se
t

to
 0

)

N
E
X
T

IR
Q

N
o
t

U
se

d
 (

se
t

to
 0

)

C
R

C
[8

:0
]

F
Q

N
[3

:0
]

(R
X
 F

IF
O

 Q
u
e
u
e

N
u
m

b
e
r)

IN
[2

:0
]

(I
n
st

a
n
c
e
 N

u
m

b
e
r)

R
C

[4
:0

]

(R
o
ll

in
g
 C

o
u
n
te

r)

S
T
S

[3
:0

]

(T
X
 M

e
ss

a
g
e
 S

ta
tu

s)

RX_AP
RX_AP[31:0]

(RX Address Pointer)

TS0
TS0[31:0]

(TimeStamp[31:0])

MH_2916

MH_543

MH_544

MH_3058

MH_3063

MH_3060

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

133 | 306

TS1
TS1[31:0]

(TimeStamp[63:32])

Managed by SW and

HW

1.4.5.7.2 RX FIFO Queue Descriptor Overview (Continuous Mode)

Table: RX FIFO Queue Descriptor Overview (Continuous Mode)

RX FIFO QUEUE

DESCRIPTOR

(Normal Mode)

31 30 29 28 27 26 25
[24:16

]
[15:12] [11:9] [8:4] [3:0]

DMA info Ctrl 1

V
A
L
ID

H
D

 (
M

e
ss

a
g
e
 H

e
a
d
e
r)

 (
a
lw

a
ys

 s
e
t

to
 1

)

N
o
t

U
se

d
 (

se
t

to
 0

)

N
E
X
T

(a
lw

a
ys

 s
e
t

to
 0

)

IR
Q

N
o
t

U
se

d
 (

se
t

to
 0

)

C
R

C
[8

:0
]

F
Q

N
[3

:0
]

(R
X
 F

IF
O

 Q
u
e
u
e

N
u
m

b
e
r)

IN
[2

:0
]

(I
n
st

a
n
c
e
 N

u
m

b
e
r)

R
C

[4
:0

]

(R
o
ll

in
g
 C

o
u
n
te

r)

S
T
S

[3
:0

]

(T
X
 M

e
ss

a
g
e
 S

ta
tu

s)

RX_AP
RX_AP[31:0]

(RX Address Pointer)

TS0
TS0[31:0]

(TimeStamp[31:0])

TS1
TS1[31:0]

(TimeStamp[63:32])

Managed by SW and

HW

1.4.5.7.3 RX Descriptor Description

Element

Number

Bit

field
Name

Managed

by

Description/Constraints

0 [31] VALID SW/MH Valid: The SW must set this bit to 0 to define a RX

descriptor is pointing to a valid data container. As soon as

the RX descriptor is executed the MH will set this bit to 1

to indicate to the SW valid data written to the S_MEM. In

case the RX descriptor is fetched with this bit set to 1

and interrupt RX_FQ_IRQ is triggered to the system for

the RX FIFO Queue having this non valid descriptor.

The SW must clear this bit only when all the RX message

MH_3072

MH_3075

MH_3076

MH_3062

MH_546

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

134 | 306

Element

Number

Bit

field
Name

Managed

by

Description/Constraints

data attached have been read
[30] HD MH only Message header: when set to 1 the RX descriptor is

defined as containing the header of the RX message. Any

other RX descriptor, if several descriptors are used for

the same RX message, will contain only payload data.

In Continuous Mode HD is always set to 1 as only one RX

descriptor is used per RX message
[29] reserved SW only Must be set to 0

[28] NEXT MH only Next: Set to 1 by the MH to indicate in the RX Header

descriptor that more than one descriptor is used for the

RX message. This information is only mentioned in the

Header Descriptor, the RX Trailing Descriptors are not

modified. This allows the SW to acknowledge only the RX

Header Descriptor for any RX messages.

In Continuous Mode NEXT is always set to 0 as only one

RX descriptor is used per RX message
[27] IRQ SW only Interrupt: when set to 1, an interrupt is triggered to the

system when the descriptor execution is complete and a

correctly received RX message was written to it. This

interrupt can provide to the SW, a synchronization point

to monitor the RX FIFO Queue execution
[26:25] Not Used SW only Must be set to 0

[24:16] CRC[8:0] SW only CRC: this CRC is computed by the SW for the current RX

descriptor. It must consider all elements assuming this

bit field as set to 0. Any CRC error is triggering an

interrupt to the system. The CRC is not evaluated if the

MH_STS.RX_DESC_CRC_EN bit is set to 0.
[15:12] FQN[3:0] SW only RX FIFO Queue number: define the RX FIFO Queue

number allocated to this RX descriptor
[11:9] IN[2:0] SW only Instance Number: define the X_CAN instance number

using that descriptor. This bit field is relevant if several

X_CAN are running concurrently. It provides a way to

detect descriptor fetch issue between instances. The

value defined must be equal to the one defined in the

MH_CFG.INST_NUM bit field register.
[8:4] RC[4:0] SW only

Rolling Counter: use to track the order of RX descriptor

fetched when a RX FIFO Queue is running. When a RX

FIFO Queue is started for the first time, its First RX

descriptor must have the RC[4:0] set to 5’b00000. This

value must be incremented for every new RX descriptor

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

135 | 306

Element

Number

Bit

field
Name

Managed

by

Description/Constraints

up to 5’b11111 and then back to 5’b00000 and so on.

Even if a wrap occurs at the end of the RX FIFO Queue

(circular RX FIFO Queue), the first RX descriptor of that

FIFO must be updated with the correct RC[4:0] value.

Thus, the First RX descriptor RC[4:0] value needs to be

updated by incrementing the value defined in the

previous descriptor. To always have RC[4:0] = 5’b00000

for the First RX descriptor (in case of circular RX FIFO

Queue), the RX FIFO Queue size must be a multiple of 32

RX descriptor
[3:0] STS[3:0] MH only Status: gives the status of the RX message received. This

bit field is written back by the MH when the descriptor

has been completed. This bit field must be set to 0 by

SW.

0’b0000: none

0’b0001: message received successfully

0’b0010: message received but not filtered

0’b0011: reserved

0’b0100: reserved

0’b0101: reserved

0’b0110: reserved

0’b0111: reserved

0’b1000: reserved

0’b1001: reserved

0’b1010: reserved

0’b1011: reserved

0’b1100: reserved

0’b1101: reserved

0’b1110: reserved

0’b1111: message acknowledge data with parity error

1

[31:0]

RX_AP

SW/MH

Normal Mode: the SW defines the address of the RX data

container to write RX data

Continuous Mode: The SW must set this bit field to 0 as

default value. The MH writes this field with the address

pointer to find the RX message attached to the RX

descriptor. Only the RX Header Descriptor is having this

bit field updated, with the RX message address in the

data container.

This address must be 32bit aligned, the two LSB bits are

assumed to be always 0

2 [31:0] TS0[31:0] MH only Timestamp 0: LSB of the 64bits timestamp of the

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

136 | 306

Element

Number

Bit

field
Name

Managed

by

Description/Constraints

successfully received RX message (only valid when HD bit

is set to 1)"

3 [31:0] TS1[31:0] MH only Timestamp 1: MSB of the 64bits timestamp of the

successfully received RX message (only valid when HD bit

is set to 1)"

Table: RX Descriptor description

Here is the list of the required elements for the various RX descriptor definitions to be managed by

the SW or the MH:

 SW to write information to MH SW to read information from MH

Element

Number
RX Descriptor

Header

Descriptor

Trailing Descriptor

0 Mandatory
Mandatory Mandatory in Normal mode

1
Mandatory in Normal mode

NA in Continuous mode (must be set to 0)

Mandatory Mandatory in Normal mode

2 NA (must be set to 0) Mandatory NA (must be equal to 0)

3 NA (must be set to 0) Mandatory NA (must be equal to 0)

Table: Element managed by SW

 MH to write information to SW MH to read information from SW

Element

Number
Header Descriptor

Trailing

Descriptor
RX Descriptor

0 Mandatory Not updated Mandatory

1
Not updated in Normal mode

Mandatory in Continuous mode

Not updated Mandatory in Normal mode

NA in Continuous mode

2 Mandatory Not updated NA

3 Mandatory Not updated NA

Table: Element managed by MH

When the Element Number is mentioned as NA, the assumed default value must be 0.

1.4.5.7.4 CRC Computation

MH_545

MH_547

MH_549

MH_548

MH_551

MH_550

MH_2167

MH_552

MH_2755

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

137 | 306

A dedicated CRC is computed for every RX descriptor. When a CRC error is detected, the DESC_ERR

interrupt signal is triggered. This way, the data transfer setting and description, up to the DMA engine,

are fully protected.

The CRC covers all the relevant data, meaning the 55bit data in the RX descriptor considering the CRC

bit field in the descriptor as equal to 0b000000000. The CRC is part of the Element Number 0.

The CRC (CRC-9_167) is computed assuming the following elements in sequence:

Element Number 0[31:25] & 0b000000000 & Element Number 0[15:0]

Element Number 1[31:0]

The Koopman representation of the polynomial CRC-9_167 is used to protect RX descriptors:

CRC-9_167 = (x9 +x7 +x6 +x3 +x2 +x +1) ‡ (CRC polynomial in implicit "+1" hex format, meaning the

trailing "+1" is omitted from the polynomial number)

Using the MH_SFTY_CTRL.RX_DESC_CRC_EN bit register, the SW can decide to disable this check for

all the TX descriptors fetched from S_MEM.

The Pseudo code of indirect CRC algorithm is available in TX Descriptor chapter under CRC

computation section.

1.4.5.7.5 RX Descriptor Errors

When a RX descriptor error is detected, the relevant information is logged in the DESC_ERR_INFO1

register. Furthermore, the source address of the faulty RX descriptor is logged in the

DESC_ERR_INFO0 register. This would help the SW to identify potential root causes when such error

occurs. The DESC_ERR_INFO1.RX_TX bit register is set to 1 when a RX descriptor gets an error.

1.4.5.8 RX Message Header Definition

Messages received from the CAN Bus are stored in the S_MEM, each consisting of a header followed

by the payload. The header data structure depends on the CAN Frame Format (Classical CAN, CAN FD,

CAN, XL) used for this message on the CAN Bus. It can be identified by the header bits FDF and XLF.

The following tables describe the three data structures used for the headers, consisting of the words

R0, R1 and R2.

Rn Bits Name Source Description/Constraints

R0 [31] FDF CAN FD Format

[30] XLF CAN XL Format

[29] XTD CAN Extended Identifier

[28:18] BaseID [28:18] CAN Base ID

[17:0] ExtID [17:0] CAN Extended ID

R1 [31:27] na na reserved

[26] RTR CAN Remote Transmission Request

MH_2756

MH_2757

MH_2758

MH_2759

MH_2766

MH_2767

MH_2783

MH_2939

MH_2940

MH_560

MH_561

MH_564

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

138 | 306

Rn Bits Name Source Description/Constraints

 [25:20] na na reserved

[19:16] DLC[3:0] CAN Data Length Code

[15:11] na na reserved

[10] FAB MH

Filter Aborted: when set to 1, the RX filtering

process was ending before completing with no

match

[9] BLK MH
Black List: When set to 1, the RX message filtered

belongs to a blacklist

[8] FM MH

Filter Match: When set to 1 one of the filter

elements (defined by FIDX[7:0]) has detected a

match

[7:0] FIDX[7:0] MH
Filter index: provide the information of the filter

index which has been triggered

R2 [31:0] na na reserved

Table: Classical CAN RX Header definition

Note: Classical CAN frames (CBDF, CEDF, CBRF, CERF) can be identified by R0.FDF = 0 and R0.XLF =

0.

Rn Bits Name Source Description/Constraints

R0 [31] FDF CAN FD Format

[30] XLF CAN XL Format

[29] XTD CAN Extended Identifier

[28:18] BaseID [28:18] CAN Base ID

[17:0] ExtID [17:0] CAN Extended ID

R1

[31:26] na na reserved

[25] BRS CAN Bit Rate Switch

[24:21] na na reserved

20 ESI CAN Error State Indicator

[19:16] DLC[3:0] CAN Data Length Code

[15:11] na na reserved

[10] FAB MH

Filter Aborted: when set to 1, the RX filtering

process was ending before completing with no

match

[9] BLK MH
Black List: When set to 1, the RX message filtered

belongs to a blacklist

[8] FM MH

Filter Match: When set to 1 one of the filter

elements (defined by FIDX[7:0]) has detected a

match

[7:0] FIDX[7:0] MH
Filter index: provide the information of the filter

index which has been triggered

R2 [31:0] na na reserved

MH_563

MH_562

MH_2906

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

139 | 306

Table: CAN FD RX Header definition

Note: CAN FD frames (FBDF, FEDF) can be identified by R0.FDF = 1 and R0.XLF = 0.

Rn Bits Name Source Description/Constraints

R0 [31] FDF CAN FD Format

[30] XLF CAN XL Format

[29] na na reserved

[28:18] Priority ID[28:18] CAN Priority identifier

[17] RRS CAN Remote Request Substitution

[16] SEC CAN Simple Extended Content

[15:8] VCID[7:0] CAN Virtual CAN Network ID

[7:0] SDT[7:0] CAN SDU Type

R1

[31:27] na na reserved

[26:16] DLC-XL[10:0] CAN Data Length Code with CAN XL encoding

[15:11] na na reserved

[10] FAB MH

Filter Aborted: when set to 1, the RX filtering

process was ending before completing with no

match

[9] BLK MH
Black List: When set to 1, the RX message filtered

belongs to a blacklist

[8] FM MH

Filter Match: When set to 1 one of the filter

elements (defined by FIDX[7:0]) has detected a

match

[7:0] FIDX[7:0] MH
Filter index: provide the information of the filter

index which has been triggered

R2 [31:0] AF[31:0] Acceptance Field

Table: CAN XL RX Header definition

Note: CAN XL frames (XLFF) could be identified by R0.FDF = 1 and R0.XLF = 1.

1.4.5.9 TX Message

For a better understanding while reading this chapter, read the TX descriptor chapter first.

A TX message is defined using one TX descriptor and a TX data container where the payload data

buffer is defined.

The Header Descriptor (or the only one, in case of one descriptor per message) holds the header data

information and for some CAN protocols, the data payload of the message. Such descriptor also

provides some additional information to the MH: the interrupt to be triggered, where to write

acknowledge data, where to fetch TX message data, etc.

MH_2908

MH_2907

MH_567

MH_566

MH_565

MH_573

MH_574

MH_575

MH_679

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

140 | 306

A TX data container is a general term to name the memory space allocated by the SW. This data

container is used to hold the payload data buffer. In most of the cases, this TX data container would

be identical to the data buffer size to transmit, avoiding the loss of memory space.

A specific TX descriptor is used for the TX FIFO Queue and for the TX Priority Queue due to the

structure of the two different implementations.

In order to optimize the fetch of the TX descriptor as well as data payload, a maximum burst length of

8x32bit is used.

The buffer size which can be defined in a TX descriptor can go up to 2048byte. This way, a TX message

can be defined using a single TX descriptor and one data buffer.

As the maximum efficiency is reached when using the maximum burst length, it is highly

recommended to define a data buffer size aligned on the maximum burst length.

If the TX payload data is not a multiple of the burst length, the remaining data in the data container

won’t be read. Nevertheless, the embedded DMA controller will use the maximum burst length to read

the payload whenever possible and will adapt the latest burst length to complete its transfer. Only the

relevant data are read from S_MEM when smaller than the maximum burst length.

The address pointer used to fetch the payload data is always 32bit, despite that payload data is byte

aligned.

Every TX descriptor holding the header of the TX message, once a TX message is transmitted, is

acknowledged for status, error reporting and timestamping.

Here below are the different types of messages according to CAN protocols.

1.4.5.9.1 Single TX descriptor Usage

A TX message can be defined using one single TX descriptor. This kind of choice requires to have the

complete payload data defined in one data container in the S_MEM. In case of Classical CAN, the

complete Classical CAN message is embedded in the TX descriptor. This means no payload buffer is

required for Classical CAN messages. The NEXT bit in TX descriptor must be set to 0. In case of a TX

Priority Queue, the TX descriptor TDO bit field must be set to 0. For the TX FIFO Queues, the NHDO is

set to a value equal to 1 in order to define the next TX header descriptor.

For the TX Priority Queue and TX FIFO Queue the same description below applies.

Classical CAN with up to 8byte payload

As the Classical CAN payload data is only 8byte, it can be defined completely in the TX descriptor (see

TD0 and TD1). There is no need to define an address pointer to a payload buffer in that case. Despite

a data container is mentioned, it is not used. This is to align with the other description in the next

sections.

MH_576

MH_577

MH_582

MH_2968

MH_584

MH_585

MH_586

MH_587

MH_588

MH_589

MH_590

MH_591

MH_592

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

141 | 306

This approach provides a single and simple way to send any Classical CAN TX message in a

straightforward manner. Using the T0, T1, TD0 and TD1 in the TX descriptor, the overall Classical CAN

message can be defined, refer to the TX descriptor chapter for more details.

TX Data Container

Element 4: T0

Element 5: T1

Element 6: TD0

Element 7: TD1

Element 2: TS0

Element 3: TS1

Element 0

Element 1

T
X

 D
e
sc

ri
p
to

r

TD0

TD1B
u
ff

e
r

Figure: Classical CAN TX message with 8byte payload (single descriptor)

CAN FD

As the CAN FD protocol can provide up to 64byte, it is mandatory to define an address pointer to read

the payload data from the S_MEM when the size is greater than 4byte. The first payload data defined

in the payload data buffer also needs to be defined in the TX descriptor. For high latency system, the

time to fetch the payload data, once the arbitration process is complete, can lead to a potential

underrun. To solve this issue, TD0 is declared in the TX descriptor. By the time TD0 is sent through

the CAN bus, the payload data will be read from the S_MEM. This approach avoids prefetching the

payload data before having the arbitration result and to throw away the complete burst when

arbitration is not successful. The TDO from the first read burst access will then be skipped.

The address pointer points to the buffer holding the overall payload data as depicted in figure below.

In case only 4byte payload data is required, there would be no need to define the address pointer

(must be set to 0). For payload data above 4byte an address pointer is required. The minimum data

container size is either 32byte (data payload lower or equal to 32byte) or 64byte (data payload

greater than 32byte).

The size of the buffer to be fetched is always 32bit aligned. When the data payload is lower than a

multiple of 32bit, padding is expected and will be discarded by the PRT.

Using the T0, T1, TD0 and the TX_AP fields, the overall CAN FD TX message can be defined, refer to

the TX descriptor chapter for more details.

TX Data Container

Element 4: T0

Element 5: T1

Element 6: TD0

Element 7: TX_AP

Element 2: TS0

Element 3: TS1

Element 0

Element 1

TD2

TD3

TD15

TDm-1

B
u

ff
e
r T

X
 D

e
s
c
ri

p
to

r

TD0

TD1

Figure: CAN FD TX message with more than 4byte payload (single descriptor)

CAN XL

MH_593

MH_594

MH_595

MH_596

MH_597

MH_598

MH_599

MH_600

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

142 | 306

As the CAN XL header information requires 3 words of 32bit, there is no payload data defined in the

TX descriptor. T2 is required only when the arbitration on the CAN bus is successful, giving time for

the MH to read the payload data from the S_MEM and to avoid the need of prefetching data.

Using the T0, T1, T2 and the TX_AP fields, the overall CAN XL TX message can be defined, refer to the

TX descriptor chapter for more details.

The size of the buffer to be fetched is always 32bit aligned. When the data payload is lower than a

multiple of 32bit, padding is expected and will be discarded by the PRT.

TX Data Container

Element 4: T0

Element 5: T1

Element 6: T2

Element 2: TS0

Element 3: TS1

Element 0

Element 1

Element 7: TX_AP

TD0

TD1

TD2

TD3

TDn-1 T
X

 D
e
s
c
ri
p
to

r

B
u

ff
e

r

Figure: CAN XL TX message (single descriptor)

1.4.5.10 RX Message in Normal Mode

Prior to reading this chapter, read the RX descriptor chapter first.

In order to receive RX messages, an RX descriptor is required to define how the MH must behave and

where to write the RX data in Normal mode.

Those RX descriptors are attached to RX FIFO Queues which are selected according to the RX filtering

rules. It means, RX descriptors are concatenated and read in sequence.

An RX data container is a general term to name the memory space allocated by the SW. This data

container is used to hold the RX message data. In most of the cases, this RX data container would not

be fully filled with data, maximum data payload being different for CAN protocols.

Every RX descriptor is assigned to a data container to write incoming data to the S_MEM. The RX data

container size is a multiple of the maximum burst lengths supported, 8x32bit with a maximum of

4064byte (127*32byte) and a minimum of 32byte. This granularity does provide some flexibility to

address several RX messages sizes with only one data container. As defined previously, if an RX data

container is smaller than an RX message, several RX descriptors will be assigned to that message.

Compared to the TX message, the header and the payload of the RX message are written together to

the S_MEM. This approach gives the flexibility to pass address pointers of the overall message to the

application and to avoid copies.

If the payload data does not cover a multiple of the burst length, some data won’t be written to the

data buffer in the container. The embedded DMA controller will use the maximum burst length

MH_601

MH_602

MH_617

MH_618

MH_2750

MH_619

MH_620

MH_621

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

143 | 306

whenever possible to write header and payload and will adapt the latest burst length to complete its

transfer.

The address pointer used to write the RX message is always 32bit aligned despite payload data is byte

aligned.

The size of the data container defined into the RX descriptor is fixed for a given RX FIFO Queue and

for all the RX descriptors of that queue. The smaller the size of data buffer the less RX descriptors a

message would require.

As the data container is defined anywhere into the S_MEM, the SW can decide to allocate all the data

containers into a continuous way in the S_MEM to ensure, the RX message is not split over several

location. It will ease the reading of RX messages and simplify the management of data buffers, see RX

FIFO Queue chapter for more details.

The NEXT bit defined into the RX Header Descriptor provides the information to the SW that one or

several RX descriptors are used. On top of it, the RX Header Descriptor of an RX message will have the

HD bit set to 1 to indicate that the data container got the header of the message.

Only the RX Header Descriptor holding the header data is acknowledged when an RX message is

received. This way, despite receiving the timestamp at the end of the data received, it will be written

with the header and status reporting.

Here below are the different types of RX messages according to the CAN protocol and some different

structures when using one or several RX descriptors.

1.4.5.10.1 Single RX Descriptor

With this structure, the size of the data container defined by the RX descriptor must be large enough

to hold the maximum payload size of the expected RX message to receive.

Classical CAN

As depicted in the figure below, the Classical CAN header and payload data can be directly written

into a 32byte data container (N = 1). If such data buffer size is defined, then several RX descriptors

would be required to support CAN FD (3 RX descriptors) or CAN XL (65 RX descriptors). It is

important to note that, according to the RX message size received, it may be possible to have message

data written in a bigger data container as every RX FIFO Queue defines its own data container size.

MH_622

MH_623

MH_624

MH_625

MH_626

MH_627

MH_628

MH_629

MH_630

MH_631

MH_632

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

144 | 306

RX Data Container

(N * 32byte)

R0
R1

RD0
RD1

Element 2: TS0

Element 3: TS1

Element 0

Element 1: RX_AP

R
X

 D
e
sc

ri
p
to

r

B
u
ff

e
r

Figure: Classical CAN RX message (single descriptor)

CAN FD

Compared to the Classical CAN, a larger data buffer is required to hold up to 64byte of payload data

and the header message data. In this case, a data container of 96byte (N = 3) is allocated to support

CAN FD frame format. There will be no issue regarding Classical CAN message as it would fit entirely

into the same data container. Doing so, the CAN XL message can be supported but would require up

to 22 RX descriptors.

RX Data Container

(N * 32byte)

R0

B
u
ff

e
r

R1
RD0
RD1

RDn-1

Element 2: TS0

Element 3: TS1

Element 0

Element 1: RX_AP

R
X

 D
e
s
c
ri
p

to
r

Figure: CAN FD RX message (single descriptor)

CAN XL

To ensure that only one RX descriptor points to one CAN XL RX message, it is possible to allocate a

data container size of more than 2048byte (N=65). With this setting, all the different CAN protocols

are covered with a single data container per RX descriptor. However, quite some memory space is lost

in the data container (when configure to support CAN XL payload size) when receiving Classical CAN

or CAN FD messages. To solve this issue, multiple RX descriptors can be used, see next chapter.

RX Data Container

(N * 32byte)

B
u

ff
e

r

RD0
R2
R1
R0

Element 2: TS0

Element 3: TS1

Element 0

Element 1: RX_AP

R
X

 D
e
s
c
ri

p
to

r

RD1

RDn-1

Figure: CAN XL RX message (single descriptor)

MH_633

MH_634

MH_635

MH_636

MH_637

MH_638

MH_639

MH_640

MH_641

MH_642

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

145 | 306

1.4.5.10.2 Multiple RX Descriptor

To optimize the memory usage, regardless of the payload size of the RX message received, several RX

descriptors can be assigned to one RX message. Doing so, the RX message is written in several data

containers. When one is full, the RX message data is going to the next one. As depicted in the figure

below, for a given size of data container (constant per RX FIFO Queue), the RX message can be

written anywhere into the S_MEM. The MH takes care of filling the right data container with the RX

message data whenever required. As a fixed memory allocation is defined per RX descriptor, the RX

message data may be spread over several data containers and RX descriptors (depends on RX

message payload data).

The figure below shows three RX descriptors and their assigned data container to hold the entire RX

message. If a data container has a size of 96byte (N=3) and a CAN XL message payload of 270byte is

received, then the RX message is depicted in figure below. Although the CAN XL message, in this

example, is split over several RX descriptors, this configuration allows to support Classical CAN and

CAN FD with only one RX descriptor.

RX Data Container

(N * 32byte)

RX Data Container

(N * 32byte)

RX Data Container

(N * 32byte)

R0
R1
R2

RD0
RD1

RD23
RD22
RD21

RD20

RD24

RDm

B
u

ff
e

r
b

u
ff

e
r

Element 2: TS0

Element 3: TS1

Element 0

Element 1: RX_AP

R
X

 D
e
s
c
ri

p
to

r

0

Element 2: Not used

Element 3: Not used

Element 0

Element 1: RX_AP

R
X

 D
e
s
c
ri
p

to
r

1

Element 2: Not used

Element 3: Not used

Element 0

Element 1: RX_AP

R
X

 D
e

s
c
ri
p

to
r

2

CAN RDn-1

RDm+3
RDm+2
RDm+1

B
u
ff

e
r

Figure: RX message (multiple descriptors)

MH_643

MH_644

MH_645

MH_646

MH_2168

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

146 | 306

1.4.5.11 RX Message in Continuous Mode

Prior to reading this chapter, read the RX descriptor chapter first.

For a better understanding of that section please also read the RX Message in Normal mode chapter.

In the Continuous mode, the RX messages, instead of being split over several data containers (see RX

Message in Normal mode chapter), are merged in the same big data container one after the other.

As depicted below only a single data container is defined per RX FIFO Queue and one RX descriptor is

used per RX message.

RX Data Container

(N * 32byte)

R0
R1
R2

RD0
RD1

RD31
RD30
RD29
RD28

RD32

RDm

B
u

ff
e

r

Element 2: TS0

Element 3: TS1

Element 0

Element 1: RX_AP

R
X

 D
e
s
c
ri
p
to

r

0

Element 2: TS0

Element 3: TS1

Element 0

Element 1: RX_AP

R
X

 D
e

s
c
ri
p

to
r

1

Element 2: TS0

Element 3: TS1

Element 0

Element 1: RX_AP

R
X

 D
e
s
c
ri
p
to

r

2

CAN RDn-1

RDm+3
RDm+2
RDm+1

R0

B
u
ff

e
r

R1
RD0
RD1

RDn-1

R0
R1

RD0
RD1

B
u

ff
e
r

Figure: RX message (Continuous Mode)

The Continuous mode makes use of the already defined RX descriptor list to support the SW

management of RX messages, see RX message Normal mode for more details.

It is important to note that the Continuous mode applies to all RX FIFO Queues when set. There is no

option to make it available only to some queues.

The RX descriptors are attached to a defined RX FIFO Queue. The RX FIFO Queue, to write the RX

message, is defined according to the RX filtering rules, see RX Filter chapter for more details. Once

the RX FIFO Queue is identified, the latest RX descriptor (meaning the current one) is fetched from

S_MEM. As the RX descriptors in a given FIFO Queue are concatenated, they will be read in sequence

up to the end of the RX message.

MH_2169

MH_2183

MH_3020

MH_2182

MH_2181

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

147 | 306

Every RX descriptor is assigned to only one RX message in this large data container. This data

container size is a multiple of the maximum burst lengths supported, 8x32bit with a maximum of

131040 byte (4095*32byte) and a minimum of 32byte. Every RX FIFO Queue has its own data

container (defined by a start address and a size).

The header and the payload of the RX message are written one after the other to the S_MEM. This

approach gives the advantage to have the complete RX message data available in one place in the

S_MEM. A copy of the RX message in the S_MEM can then be easily defined by a start address and a

size.

Whenever it is possible, the embedded DMA controller uses the maximum burst length to write header

and payload data and will adapt the latest burst length to complete its transfer.

The address pointer, used to write the RX message, is always 32bit aligned despite payload data is

byte aligned.

The data container is defined anywhere in the S_MEM. Being defined as a 32bit address pointer, it can

be defined in a 4G byte memory area.

The NEXT bit defined in the RX Descriptor will never be set, as only one RX Descriptor is used per RX

message. The RX Descriptor pointing to the RX message has the HD bit set to 1 as it is a Header

Descriptor. No Trailing Descriptors are used for such mode, only one TX descriptor is required, and it

is a Header Descriptor.

Only the RX Header Descriptor holding the header data is acknowledged when an RX message is

received, considering the Normal mode. The same applies for the Continuous mode, see RX message

in Normal mode chapter for more details.

Compared to the Normal mode, there is no trade-off to consider regarding the different CAN protocol

payload data size. As the RX messages are written in a row, no loss of memory is expected in the data

container assigned to an RX FIFO Queue.

This mode will also ensure that RX data are always linearly and continuously written in the S_MEM. At

the beginning of the reception of an RX message header, a check is performed to ensure the RX data

to be received can fit entirely in the data container. As the RX message cannot be written at the

bottom and at the top of the data container, the MH will go to the start address of the data container

before writing the first data. This would provide to the SW an easy way to perform memory copy, as

one start address, and a size can define the overall RX message.

1.4.5.12 Descriptor Acknowledgement

For the TX and RX paths, the MH is providing data information back to the RX and TX Header

Descriptor.

MH_2171

MH_2172

MH_2173

MH_2174

MH_2176

MH_2177

MH_2178

MH_2179

MH_2180

MH_647

MH_651

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

148 | 306

To do so, some place holders are defined in the RX and TX descriptors for the MH to write RX and TX

message status, timestamping and error reporting.

As the CAN bus is not a full duplex interface, there shouldn’t be any collision on the acknowledge of

RX and TX descriptors, with the exception of the PRT when in loopback mode. In such mode, all TX

messages transmitted by the MH are send back by the PRT to the MH, refer to the PRT chapter for

detailed description of the loopback.

The process of acknowledgement is completely separated from the reception or transmission of a CAN

frame, a dedicated DMA channel is reserved for such purpose.

1.4.5.12.1 RX Descriptor

For the RX path, one or several RX descriptors can be used to hold the complete RX message. Once an

RX message is received successfully, an acknowledgement is written back to the Header Descriptor

when the message is completed. If several descriptors are used per message (Trailing Descriptors),

they are not changed by the MH. If the data container assigned to the RX descriptor is sized in such a

way that any RX message can fit in entirely, then every RX descriptor (in fact Header descriptors in

that case) will be acknowledged.

If several RX descriptors are used to store the RX message and an issue occurs while processing the

message, all RX descriptors already used are then released for the next RX message.

Here below is the list of bit fields used by the MH to provide the acknowledgement information to the

RX Header descriptor, see RX Descriptor chapter for details:

• VALID: The MH expected this bit to be set to 0 by the SW to ensure the data container is

ready to be written again. This bit is written by the MH to 1, when an RX message is

received successfully, and the data are available in S_MEM. It is true only for the RX

descriptor holding the RX message header data

• TS0[31:0] and TS1[31:0]: The MH writes the 64bit timestamp (TS0 and TS1) in the RX

descriptor when the RX message data is received successfully. Only the RX descriptor

holding the data will have this bit field updated.

• NEXT: As soon as more than one RX descriptor is required for an RX message, the MH sets

this bit to 1. Only the RX Header descriptor will have this bit field updated. The Trailing

descriptors are not updated. When using the Continuous mode, this bit is always set to 0.

• HD: In case several RX descriptors are used to define an RX message, the MH sets this bit to

1 to identify which descriptor has the message header embedded into its data buffer.

MH_652

MH_653

MH_654

MH_655

MH_648

MH_649

MH_656

MH_657

MH_658

MH_659

MH_661

MH_662

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

149 | 306

• STS[3:0]: This bit field gets updated by the MH for any usage of RX descriptor. It provides

information on the status of the RX message and on any related issue while RX FIFO

Queues are running

1.4.5.12.2 TX Descriptor

For the TX path, once a TX message is processed, the TX Header Descriptor is written back with the

relevant information. The list of conditions to trigger an acknowledge is defined below:

• Message sent successfully

• Message rejected by the TX filter (see TX Filter chapter)

• Message discarded after several re-transmission

• Message rejected by the PRT (see HFI codeword in PRT chapter)

Here below is the list of bit fields used by the MH to provide the acknowledgement information to the

TX descriptor, see TX Descriptor chapter for details:

• VALID: The MH expected this bit to be set to 1 by SW to ensure the data buffer is ready to be

sent, only the TX descriptors having this bit set to 1 are accepted and executed. This rule

applies for every TX descriptor with or without the header data (when TX message is split

over several descriptors). When the last data defined by this TX descriptor has been sent

over the CAN bus, it will be set back to 0 by the MH only to the TX descriptor holding the

header data.

• TS0[31:0] and TS1[31:0]: When the TX message data is sent successfully, a 64bit timestamp

is written back into to the TX descriptor holding the header data

• STS[3:0]: This bit field gets updated by the MH for any usage of TX descriptor. It provides

information on the status of the TX message and on any related issue while TX FIFO Queues

are running

1.4.5.13 TX FIFO Queue

MH_663

MH_3035

MH_3034

MH_664

MH_665

MH_666

MH_667

MH_668

MH_2955

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

150 | 306

TX FIFO QUEUE

TX Data Container

TX Data Container

TX Data Container

Descriptor Linked-List

P
R

O
C

E
S

S
E

D
 I

N
 O

R
D

E
R

TX Data Container

Element 4: T0

Element 5: T1

Element 6: T2

Element 4: Not used

Element 5: Not used

Element 6: Not used

Element 7: TX_AP

Element 2: TS0

Element 3: TS1

Element 0

Element 1

Element 2: Not used

Element 3: Not used

Element 0

Element 1

Element 7: TX_AP

Element 4: T0

Element 5: T1

Element 6: TD0

Element 7: TX_AP

Element 2: TS0

Element 3: TS1

Element 0

Element 1

Tx linked -list start
address register

TD2

TD3

TD6

TD15

TDi-1

TD2

TD3

TD4

TD5

B
u
ff

e
r

T
X

 D
e
s
c
ri

p
to

r
0

T
X

 D
e

s
c
ri
p
to

r
1

T
X

 D
e
s
c
ri

p
to

r
n

-1

TD2

TD3

TDj-1

TD0

TD1

TD

TD1

TD0

TD1

TD16

Container:
Linear memory

space assigned

to one descriptor

Buffer:
Linear memory space

used by a descriptor

Head Descriptor:

Descriptor holding the header of the TX

message

First Descriptor :

Descriptor defined by the TX FIFO Queue

start address

Current Descriptor:

Descriptor executed by the MH

Next Descriptor:
Descriptor to be used as next in

the current TX FIFO Queue

Last Descriptor :

The last descriptor defined into

the TX FIFO Queue

B
u
ff

e
r

B
u

ff
e

r

Element 4: T0

Element 5: T1

Element 6: TD0

Element 2: TS0

Element 3: TS1

Element 0

Element 1

Element 7: TD1

T
X

 D
e

sc
ri

p
to

r
n

TD0

TD1B
u
ff

e
r

Element 4: T0

Element 5: T1

Element 6: TD0

Element 2: TS0

Element 3: TS1

Element 0

Element 1

Element 7: TD1

T
X

 D
e
s
c
ri

p
to

r
n

+
1

Not Defined

CAN-FD TX Message

Classic CAN TX Message

CAN-XL TX Message

CAN-FD TX Message

Figure: TX FIFO Queue description

Up to 8 TX FIFO Queues can be defined and managed by the MH.

When the SW wants to configure N TX FIFO Queues, only the queue number from 0 to N-1 can be

used.

A TX FIFO Queue is a list of TX messages to be sent in order to the PRT.

Each one being fully independent from the others, the SW can declare and add new messages to any

of the FIFO Queue without stopping the execution of the others or the current one. In this sense, the

TX FIFO Queues can be enabled or disabled individually. An abort mechanism is provided to stop and

flush each TX FIFO Queue individually.

Prior to launch any TX FIFO Queue, the MH must be started (MH_CTRL.START written to 1 will drive

the MH_STS.BUSY bit status to 1). To start the TX FIFO Queue n, write 1 to the

TX_FQ_CTRL0.START[n]. Before launching a TX FIFO Queue n, it must be enabled by setting the

TX_FQ_CTRL2.ENABLE[n] bit to 1. Once enabled and started, there is no way to disable it while it is

MH_670

MH_671

MH_2751

MH_672

MH_673

MH_1813

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

151 | 306

running without a defined procedure. Instead, the abort bit TX_FQ_CTRL1.ABORT[n] provides a way to

stop a TX FIFO Queue n running and to ensure a safe stop and flush of ongoing data. For more detail

on starting and stopping TX FIFO Queues, refer to the Application Information chapter.

To ensure no dead lock can occur at start, the ENABLE signal from the PRT must be set to 1, to allow

any TX FIFO Queue to start. This signal status can be monitored in the MH_STS.ENABLE bit field.

There is also nothing preventing the SW to declare and run a TX FIFO Queue with a defined list of TX

messages, assuming an interrupt at the end of the TX FIFO Queue execution.

However, the TX FIFO Queue can be used as a circular buffer when the Last Descriptor defines a wrap

to the First Descriptor (WRAP bit set to 1 in TX descriptor). Doing so, the SW can add new messages

in an endless manner over time.

The mechanism, used to manage TX FIFO Queues, is based on the concept of linked list. Any TX FIFO

Queue is defined using a linked list of TX descriptors and data buffers to read TX message payload

from the S_MEM.

A linked list is made of descriptors, where a descriptor is defined by several data elements of the

same size, the element is a 32bit word. Each element provides some information or would define

some actions to perform. A descriptor is built by the SW but will be read and executed by the MH.

Every TX descriptor is of the same size, pointing to a data buffer and also to the next descriptor, as

depicted in the figure above. The TX descriptors are continuous in memory (to ease and simplify

implementation). Therefore, it is not required to declare or use a bit field to mention the position of

the next descriptor as it is implicit.

The linked list is started by fetching the First Descriptor in the list, once it is fully read, it is executed

and the data buffer assigned to it, is read. Other actions can be defined into the element data like

triggering an interrupt or setting a flag. The linked list is processed one descriptor at a time, once a

descriptor is complete, the next one is fetched into the list and the process repeats itself. The process

keeps going up to the Last Descriptor of the linked list and from this point in, may end or may wrap to

the first descriptor in a circular buffer mode.

Every TX FIFO Queue defines its own order of TX messages to be send to the CAN bus, but as several

queues are running concurrently, an arbitration process is performed between queues to select the

highest priority message. Every TX message is filtered to ensure only the required ones can be sent.

The SW builds those queues with messages and the MH takes care of sending them whenever

appropriate.

For the TX FIFO Queues, data buffers hold the payload data of the TX message while the descriptor

defines header information. In some cases, the first payload data may also be part of the Head

Descriptor.

MH_674

MH_675

MH_676

MH_677

MH_678

MH_680

MH_681

MH_682

MH_684

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

152 | 306

To give a status report and some information like timestamping, the MH is also able to write back

some elements in the TX descriptors. Not all of them are written back but only the one having the

Header Descriptor data are updated.

It is possible to wrap at the top of the TX FIFO Queue any time but with the following constraints:

• The WRAP bit must be set in the Header Descriptor to identify where the next TX message is

located

The descriptors are mainly defined on SRAM as they drive the actions to be taken. Nothing prevents

the SW to declare and use the E_MEM instead but it can slow down the execution and may create real

time issues. However, the data buffers can be either in E_MEM, which is usually the case, or in SRAM.

As a matter of fact, if the next descriptor cannot be fetched before the relevant data are fully read or

written, the linked list execution speed would depend on the data access time. To solve this issue,

outstanding reads are performed to hide the system latency whenever possible.

TX Data Containers can be defined at any location in S_MEM. But for performance reason and to

optimize the burst access, it is highly recommended to have the TX buffer 32byte aligned. Those

containers are considered as memory space that is allocated by the Memory Management Unit to store

buffer. Once a message is sent, the container can be deallocated, so the memory space is released for

further usage.

As soon as the TX FIFO Queue is started, the MH will fetch the First Descriptor and store it to L_MEM.

When the TX descriptor is available in L_MEM, it will be part of the arbitration process. As long as the

TX message defined by this TX descriptor is not sent to the CAN bus, it will remain for all the

arbitration runs. When it is sent successfully, the next TX descriptor of that TX FIFO Queue is fetched

automatically.

The MH will proceed with all TX FIFO Queues in the same way. As the TX message to be sent is based

on its priority, the TX FIFO Queues will run at a different rate up to the point that all TX messages are

sent successfully.

If the Last Descriptor of a TX FIFO Queue sets the END bit, the MH will end the FIFO execution as

soon as the TX message defined is transmitted successfully on the CAN bus and the TX descriptor

acknowledge is written to the S_MEM.

Up to 1023 TX descriptors can be defined for a TX FIFO Queue. When the maximum number of TX

descriptor defined for a TX FIFO Queue is reached, the MH wraps automatically to its initial start

address to fetch the next TX descriptor. Despite this default behavior, it is still possible at any time for

the SW to mention a wrap using the WRAP bit in the Header Descriptor.

When the END bit is not set for the last TX descriptor, the TX FIFO Queue is considered as endless,

and any new TX descriptor can be appended to the already defined last descriptor. To allow such way

of working, the last descriptor must always be not valid (VALID bit set to 0). This is very important as

the detection of the non-valid TX descriptor triggers an interrupt to the system to declare that the TX

MH_685

MH_686

MH_688

MH_689

MH_690

MH_691

MH_692

MH_693

MH_694

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

153 | 306

FIFO Queue is stopped. It would then be up to the SW to append a new TX descriptor and restart the

TX FIFO Queue.

If for some reasons a TX FIFO Queue has an error, it is still possible to abort the execution of that TX

FIFO Queue. When such action is performed, the TX FIFO Queue will be considered as active as long

as the current data transfer assigned to a TX descriptor is not finished. This means, the TX descriptor

is not considered for the arbitration anymore, so no more fetches are done, and the TX FIFO Queue is

set inactive.

Any safety issue related to a TX descriptor executed by a TX FIFO Queue will stop it right away. The TX

FIFO Queue is declared as no more valid and is stopped. To identify such issue, some interrupts are

triggered to the system, TX_CRC_ERR and TX_SFTY_STS. Despite that the faulty TX FIFO queue is

stopped, the others will keep going.

If a message has reached maximum number of re-transmissions or has declared an invalid header

format, the message is skipped and the next one in the TX FIFO Queue is considered instead. The

error mentioning such skip is written back to the report status bit field in the TX Header Descriptor.

In a context where a TX descriptor provides the definition of one TX message, the next TX message is

the next TX descriptor, an offset of 1 (1x32byte) is required.

A TX FIFO Queue n is controlled and monitored using several registers and bit registers:

• The TX_FQ_START_ADD{n} (n € {0, 1, 2, …, 7}) register to define the start address of the TX

FIFO Queue n

• The TX_FQ_CTRL0.START[n] (n € {0, 1, 2, …, 7}) register to launch the TX FIFO Queue n

• The TX_FQ_SIZE{n} (n € {0, 1, 2, …, 7}) register to define the maximum number of TX

descriptor for the TX FIFO Queue n before looping back to the initial start address

• The TX_FQ_ADD_PT{n} (n € {0, 1, 2, …, 7}) register to monitor the current address pointer of

the TX FIFO Queue n

• The TX_DESC_ADD_PT register to monitor the current address pointer

• The TX_FQ_CTRL1.ABORT[n] (n € {0, 1, 2, …, 7}) bit register to abort the execution of the TX

FIFO Queue n

• The TX_FQ_CTRL2.ENABLE[n] (n € {0, 1, 2, …, 7}) bit register to enable the TX FIFO Queue n

prior to use it

• The TX_FQ_INT_STS.SENT[n] and TX_FQ_INT_STS.UNVALID[n] (n € {0, 1, 2, …, 7}) bit

registers to identify respectively, a message is transmitted, and an invalid TX descriptor is

detected

• The TX_FQ_STS0.BUSY[n] and TX_FQ_STS.STOP[n] (n € {0, 1, 2, …, 7}) bit registers to know

respectively, the status of the TX FIFO Queue n, busy (TX FIFO Queue is active) and

stopped or running

MH_695

MH_696

MH_697

MH_3044

MH_698

MH_699

MH_700

MH_701

MH_702

MH_2160

MH_703

MH_704

MH_705

MH_706

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

154 | 306

• The TX_FQ_STS1.ERROR[n] and TX_FQ_STS.UNVALID[n] (n € {0, 1, 2, …, 7}) bit registers to

identify the root cause of the TX FIFO Queue being stopped, an error is detected, or an

invalid TX descriptor is detected

A TX FIFO Queue is being controlled for any issue using common bit registers when receiving

interrupts:

• The SFTY_INT_STS.TX_DESC_CRC_ERR and SFTY_INT_STS.TX_DESC_REQ_ERR bit registers to

identify respectively, any CRC issue on TX descriptor running in the TX FIFO Queue n and

non-expected TX descriptor

• The ERR_INT_STS.DP_TX_ACK_DO_ERR bit register to identify overflow on TX ACK data path

for the TX FIFO Queues

• The ERR_INT_STS.DP_TX_SEQ_ERR bit register to identify if an issue occurs on the TX_MSG

interface

1.4.5.13.1 Basic Mode

The SW defines one TX descriptor per TX message payload data. Thus, a TX message would be:

• One TX descriptor to provide the complete header information

• One TX data container to hold the complete TX message payload data (only required for CAN

FD and CAN XL when payload data is over 8byte)

Data containers holding the TX payload buffer can be declared anywhere in the S_MEM despite being

attached to only one TX descriptor, as depicted in the figure below.

MH_2164

MH_707

MH_708

MH_709

MH_710

MH_712

MH_713

MH_714

MH_715

MH_716

MH_717

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

155 | 306

TX FIFO QUEUE

TX Data Container

TX Data Container

Descriptor Linked -List

P
R

O
C

E
S

S
E

D
 I
N

 O
R

D
E

R

TX Data Container
Element 4: T0

Element 5: T1

Element 6: T2

Element 4: T0

Element 5: T1

Element 6: TD0

Element 7: TX_AP

Element 2: TS0

Element 3: TS1

Element 0

Element 1

Element 2: TS0

Element 3: TS1

Element 0

Element 1

Element 7: TX_AP

Element 4: T0

Element 5: T1

Element 6: TD0

Element 7: TX_AP

Element 2: TS0

Element 3: TS1

Element 0

Element 1

Tx linked-list start
address register

TD2

TD3

TD6

TD15

TDi-1

TD2

TD3

TD4

TD5

B
u
ff

e
r

T
X

 D
e

sc
ri

p
to

r
0

T
X

 D
e

s
c
ri
p

to
r

1
T

X
 D

e
s
c
ri
p

to
r

n
-1

TD0

TD1

TD0

TD1

TD16

Element 4: T0

Element 5: T1

Element 6: TD0

Element 2: TS0

Element 3: TS1

Element 0

Element 1

Element 7: TD1

T
X

 D
e
s
c
ri
p

to
r

n

TD0

TD1B
u

ff
e

r

TDi+2

TDi+3

TDi+m-1

TDi

TDi+1

B
u
ff

e
r

Element 4: T0

Element 5: T1

Element 6: TD0

Element 2: TS0

Element 3: TS1

Element 0

Element 1

Element 7: TD1

T
X

 D
e

s
cr

ip
to

r
n

+
1

CAN-FD TX Message

Classic CAN TX Message

CAN-XL TX Message

Figure: TX FIFO Queue (Basic Mode)

This approach provides less constraints on system as only one TX descriptor needs to be fetched per

TX message. It would be much more efficient in terms of performance and memory allocation,

regarding linked list descriptors.

The only constraint for such configuration would be the memory space allocated to the payload data.

As the CAN XL can support up to 2048 byte, the size of the data container to hold the complete

payload can be quite large.

1.4.5.14 TX Priority Queue

MH_718

MH_719

MH_720

MH_730

MH_2956

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

156 | 306

TX PRIORITY QUEUE

TX Data Container

(multiple of 32byte)

TX Data Container

(multiple of 32byte)

TX Data Container

(multiple of 32byte)

Descriptor Slots

(Up to 32)

TD0

TD1

TD2

TD3

TDm-1

TD2

TD3

TD15

TDm-1

B
u

ff
e

r

TD0

TD1

TD0

TD1

B
u
ff
e

r

P
R

O
C

E
S

S
E

D
 I
N

 A
N

Y
 O

R
D

E
R

Element 4: T0

Element 5: T1

Element 6: T2

Element 4: T0

Element 5: T1

Element 6: TD0

Element 7: TD1

Element 2: TS0

Element 3: TS1

Element 0

Element 1

Element 2: TS0

Element 3: TS1

Element 0

Element 1

Element 7: TX_AP

Element 4: T0

Element 5: T1

Element 6: TD0

Element 7: TX_AP

Element 2: TS0

Element 3: TS1

Element 0

Element 1

T
X

 D
e

s
c
ri
p
to

r
S

L
O

T
 0

T
X

 D
e
s
c
ri
p

to
r

S
L
O

T
 1

T
X

 D
e

s
c
ri
p
to

r

S
L
O

T
 3

1

TX Priority Queue

start address register

Container:
Linear memory

space assigned to
one descriptor

Buffer:
Linear memory space

used by a descriptor

Head Descriptor:
Descriptor holding the header of the TX

message

Current Descriptor:

Descriptor executed by the MH

B
u
ff

e
r

CAN-FD TX Message

Classic CAN TX Message

CAN-XL TX Message

Figure: TX Priority Queue description

This kind of queue does not behave as the TX FIFO Queue, but the way messages are defined and how

the MH is reading the descriptor are identical.

A TX Priority Queue can be configured with a maximum of 32 slots.

When the SW wants to configure N TX Priority Queue slots, only the slot number from 0 to N-1 can be

used.

Every slot is assigned one TX message from a SW point of view. Every slot can be enabled/disabled

individually leaving the option to define any number of active slot or none in the SW. Compared to the

TX FIFO Queue, there is no order of execution. Any message defined in the TX Priority queue can be

selected and executed in any order, only the highest priority message is selected first. Those

messages are evaluated against the one currently in use in all TX FIFO Queues.

The same principle is used to define a TX message, meaning some TX descriptors and TX data buffers

to define a message. Like the TX FIFO Queues, data buffers hold the payload data of the TX message

while descriptor defines header information. In some cases, the first payload data may also be part of

the descriptor.

MH_732

MH_733

MH_2753

MH_2754

MH_734

MH_735

MH_737

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

157 | 306

To give a status report and some information like timestamping, the MH writes back some bit field in

the TX Header Descriptor. This way the SW is able to track back TX messages sent and identify those

with issues.

The TX Priority Queue is using the same data path as the one defined and implemented for the TX

FIFO Queue.

The main difference between the two queues is:

• The Priority Queue is managed in any order. As soon as a slot over the 32 is available, a new

message can be defined

• The SW needs to trigger the MH to consider a new message in a slot

• The SW needs to read status register to identify which message has been sent

Prior to launch any TX FIFO Queue slot, the MH must be started (MH_CTRL.START written to 1 will

drive the MH_STS.BUSY bit status to 1). To start the TX FIFO Queue slot n, write 1 to the

TX_PQ_CTRL0.START[n]. Before launching a TX FIFO Queue slot n, it must be enabled by setting the

TX_PQ_CTRL2.ENABLE[n] bit to 1. Once enabled and started, there is no way to disable it while

running without a defined procedure. Instead, the abort bit TX_PQ_CTRL1.ABORT[n] provides a way to

stop a TX FIFO Queue slot n running and to ensure a safe stop and flush of ongoing data. For more

detail on starting and stopping TX Priority Queue slots, refer to the Application Information chapter.

To ensure that no dead lock can occur at start, the ENABLE signal from the PRT must be high to allow

any TX FIFO Queue to start. This signal status can be monitored in the MH_STS.ENABLE bit field.

As soon as one or several slots of the TX Priority Queue are started, the MH will fetch the relevant TX

descriptors defined at those locations and stores them in L_MEM. When the TX descriptors are

available in the L_MEM, they will be part of the arbitration process. As long as the TX messages

defined by those TX descriptors are not sent to the CAN bus, they will remain for all the arbitration

runs. It is important to note the TX FIFO Queue's messages are also part of this arbitration process.

When the TX message is sent successfully on the CAN bus and TX descriptor acknowledge is written to

S_MEM, the TX Priority Queue slot is released and set inactive. A TX_PQ_IRQ interrupt can be triggered

to the SW when the TX descriptor acknowledge is written to the S_MEM. The other option would be to

poll the corresponding status bit register, to identify when the transfer has completed. This last

approach requires much more CPU time compared to the interrupt one.

As the TX message to select is based on an arbitration process, the TX Priority Queue execution will

run at a different rate compared to the TX FIFO Queues. If TX messages are defined into the TX

Priority and have highest priority, they will go between TX FIFO Queues. The SW can add new

messages at any time when a slot is available.

If for some reason a TX Priority Queue slot n needs to be stopped, it is still possible to abort the

execution of that slot. When such action is performed, the TX Priority Queue slot n will be considered

as no more active. If the TX message assigned to this slot is already in progress to the CAN bus or has

been selected as the next message to be sent, it won’t be cancelled. By using a register status, it is

possible to identify if the slot aborted has been done before or after the sending of the TX message.

MH_738

MH_739

MH_740

MH_741

MH_742

MH_2662

MH_743

MH_744

MH_745

MH_746

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

158 | 306

Any safety issue related to a TX descriptor executed by a TX Priority Queue slot is declared as no more

valid. This means, it will not be part of the arbitration process with the other slots but won’t prevent

the others to be executed. To identify such issue a TX_DESC_CRC_ERR is sent to the system. Despite

this TX Priority Queue slot is stopped, the others will keep going with their own TX descriptors.

If some message doesn’t go through for the two following reasons, maximum number of restarts

reached or invalid header format, the message is discarded. The error status being detected is written

back to the TX descriptor holding the header data.

There is a way to keep track of the TX descriptors used for a given TX FIFO Queue, refer to the Trace

and Debug chapter.

A TX Priority Queue is controlled and monitored using several registers and bit registers:

• The TX_PQ_START_ADD register to define the start address of the TX Priority Queue

• The TX_PQ_CTRL0.START[n] (n € {0, 1, 2, …, 31}) bit register to launch the TX Priority Queue

slot n

• The TX_PQ_CTRL1.ABORT[n] (n € {0, 1, 2, …, 31}) bit register to abort the execution of the

TX Priority Queue slot n

• The TX_PQ_CTRL2.ENABLE[n] (n € {0, 1, 2, …, 31}) bit register to enable the TX Priority

Queue slot n prior to use it

• The TX_DESC_ADD_PT register to monitor the current address pointer

• The TX_PQ_STS0.BUSY[n] (n € {0, 1, 2, …, 31}) bit register to know the status of the TX

Priority Queue slot n, either busy (TX Priority Queue Slot is having a TX message to send)

or not busy (Slot is no more active for reasons like message sent, safety issue, ...)

• The TX_PQ_STS1.SENT[n] (n € {0, 1, 2, …, 31}) bit register to know the status of the TX

message assigned to the TX Priority Queue slot n, either sent (TX message assigned to slot

n is sent) or not sent (potential reasons are safety issue, max re-transmission counter

reached, ...)

• The TX_PQ_INT_STS0.SENT[n]/ TX_PQ_INT_STS1.SENT[n] and TX_PQ_INT_STS0.UNVALID[n]/

TX_PQ_INT_STS1.UNVALID[n] (n € {0, 1, 2, …, 31}) bit register to identify respectively, a

message is transmitted, or an invalid TX descriptor is detected

A TX Priority Queue is being controlled for any issue using common bit registers:

• The SFTY_INT_STS.TX_DESC_CRC_ERR and SFTY_INT_STS.TX_DESC_REQ_ERR bit registers to

identify respectively, any CRC issue on TX descriptor running in the TX FIFO Queue n and

non-expected TX descriptor

• The ERR_INT_STS.DP_TX_ACK_DO_ERR bit register to identify overflow on TX ACK data path

for the TX FIFO Queues

MH_747

MH_748

MH_2945

MH_749

MH_750

MH_751

MH_752

MH_753

MH_754

MH_755

MH_1460

MH_756

MH_757

MH_758

MH_759

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

159 | 306

• The ERR_INT_STS.DP_TX_SEQ_ERR bit register to identify if an issue occurs on the TX_MSG

interface

1.4.5.15 RX FIFO Queue in Normal Mode

RX FIFO QUEUE (Normal mode)

Descriptor Set:
Group of one or more descriptors combined

to provide storage for one RX message
The leading descriptor of the set is called the
Head Descriptor and the other descriptors

are called the Trailing Descriptors

Head Descriptor:
Descriptor pointing to the RX data

container holding the header data

RX Data Container
(N*32bytes)

RX Data Container
(N*32bytes)

RX Data Container
(N*32bytes)

RDi+1

RDi+2

RD2

RDm+i-1

B
u

ff
e
r

R0

R1

RD0

RD1

RDi

RD1

RD0

R2

R1

R0

Descriptor Linked-List

Element 2: Not used

Element 3: Not used

Element 0

Element 1: RX_AP

Element 2: TS0

Element 3: TS1

Element 0

Element 1: RX_AP

Element 2: TS0

Element 3: TS1

Element 0

Element 1: RX_AP

R
X

D
e
sc

ri
p
to

r
0

R
X

D
e
sc

ri
p

to
r

1
R

X

D
e
sc

ri
p

to
r

n

P
R

O
C

E
S

S
E

D
 I
N

 O
R

D
E

R

RDi

B
u

ff
e
r

Current Descriptor:

Descriptor executed by the MH

Trailing Descriptor:
Descriptor holding only payload buffer

pointer

Element 2: Not used

Element 3: Not used

Element 0

Element 1: RX_AP

R
X

D
e

sc
ri
p
to

r
2

Next Descriptor:
Descriptor to be used as next in

the current RX FIFO Queue

Last Descriptor:

The last descriptor defined into

the RX FIFO Queue
Data Container:
Linear memory space
assigned to one RX

descriptor
The size defined is
identical for all the RX

data container of one
RX FIFO Queue

First Descriptor:

Descriptor defined by the RX FIFO Queue

start address

RX Data Container
(N*32bytes)

RDi+3

RDi+2

RDi+1

RDm-1

Buffer:
Linear memory

space used by a RX
descriptor in the
data container

B
u

ff
e
r

B
u
ff

e
r

RX Data Container

(N*32bytes)

RX Data Container
(N*32bytes)

RX Data Container
(N*32bytes)

Element 2: TS0

Element 3: TS1

Element 0

Element 1: RX_AP

R
X

D
e

sc
ri

p
to

r
3

Element 2: TS0

Element 3: TS1

Element 0

Element 1: RX_AP

R
X

D
e
s

cr
ip

to
r

4

Element 2: TS0

Element 3: TS1

Element 0

Element 1: RX_AP

R
X

D
e
s

cr
ip

to
r

n
-1

RX data container size

defined in register for the

entire RX FIFO Queue

Descriptor linked-list start

address defined in register

Descriptor link list size

defined in register

RX Data Container
(N*32bytes)

R0

R1

RD0

RD1

B
u

ff
e

r

Element 2: TS0

Element 3: TS1

Element 0

Element 1: RX_AP

R
X

D

e
sc

ri
p

to
r

5

Figure: RX FIFO Queue description (Normal mode)

Up to 8 RX FIFO Queues can be defined and managed by the MH.

When the SW wants to configure N RX FIFO Queues, only the queue number from 0 to N-1 can be

used.

An RX FIFO Queue is a list of RX descriptors pointing to an RX data container to store the RX

messages received by the PRT.

MH_760

MH_761

MH_762

MH_763

MH_764

MH_2752

MH_765

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

160 | 306

The RX filtering rules, programmed by the SW, define if a message is rejected or accepted. In case it is

accepted, it defines which RX FIFO Queue receives the message. If a message is rejected, it won’t

appear in any of the FIFOs. Each one being fully independent from the others, the MH appends new

RX message as they arrive on the CAN Bus.

The mechanism to manage RX FIFO Queues is based on the concept of linked list. Any RX FIFO Queue

uses a linked list of RX descriptors and RX data containers. Those containers are used to write the RX

message data to the S_MEM and have fixed size over the entire RX FIFO Queue. A different size can be

defined per RX FIFO Queue but must always be a multiple of 32byte.

The size of the data container is programmable to store small or large RX message payload data, if

required. Up to RX_FQ_SIZE{n}.DC_SIZE[6:0] * 32byte data container size can be defined per RX

descriptor in an RX FIFO Queue n. As the size is programmable per RX FIFO Queue, it is then possible

to limit the memory footprint according to the expected message to be received.

A linked list is made of descriptors, where a descriptor is defined by several data elements of the

same size, the element is 32bit word. Each element provides some information or would define some

actions to perform. A descriptor is built by the SW but will be read and executed by the MH. Every

descriptor is of the same size, pointing to a data container and also to the next descriptor. The link

between descriptors is just a fixed offset, as they are continuous in memory (to ease and simplify

implementation). Therefore, it is not required to declare or use a bit field to mention the position of

the next descriptor as it is implicit (dashed lines). As data containers have a fixed size and the RX

message received may change in size, several descriptors can be required.

As messages are received in a continuous way, the RX FIFO Queue are used in a circular buffer mode.

This means when the Last Descriptor is reached, the MH will consider the First Descriptor as the next

descriptor. The Last Descriptor is defined by the size of the RX FIFO Queue and the start address of

the RX FIFO Queue.

An RX filter in the MH is used to accept or reject RX messages. If a message is accepted, it is then sent

to a defined RX FIFO Queue. The RX filter builds those queues over time with messages based on the

filtering result. It is up to the SW to read them in time.

The RX filter observes all the incoming RX messages to identify the right RX FIFO Queue. Once

defined, the first RX descriptor attached to the selected RX FIFO Queue is fetched and used to write

the incoming data to the S_MEM. As soon as the incoming RX data increases above the limit of the

data buffer pointed by the current RX descriptor, a new one is fetched to keep going. This process

repeats up to last RX data received.

The MH will proceed with all the RX FIFO Queues the same way. As the RX FIFO Queue selected

depends on the RX filtering result, the RX FIFO Queues will be filled up at a different rate.

Prior to launching any RX FIFO Queue, the MH must be started (MH_CTRL.START written to 1 will

drive the MH_STS.BUSY bit status to 1). To start the RX FIFO Queue n, write 1 to the

MH_766

MH_767

MH_3149

MH_768

MH_769

MH_770

MH_771

MH_772

MH_2660

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

161 | 306

RX_FQ_CTRL0.START[n]. Before launching an RX FIFO Queue n, it must be enabled by setting the

RX_FQ_CTRL2.ENABLE[n] bit to 1. Once enabled and started, there is no way to disable it while

running without a defined procedure. Instead, the abort bit RX_FQ_CTRL1.ABORT[n] provides a way to

stop an RX FIFO Queue n running and to ensure a safe stop and flush of ongoing data. For more detail

on starting and stopping RX FIFO Queues, refer to the Programming Guidelines chapter.

It is essential to configure and start the relevant RX FIFO Queues before starting the PRT. When the

MH is not started and so no RX FIFO Queues are started, the MH will not accept any RX data, leading

to a PRT data overflow.

Each RX FIFO Queue can be managed individually, the SW can decide to enable or disable any queue

according to the way RX messages must be managed. Once the RX filter is defined and the PRT is

receiving messages, any change on the RX FIFO Queue setting is not possible. There is still a

mechanism to abort and flush an RX FIFO Queue while others are running.

Once a linked list is started and an RX message needs to be written inside, the first descriptor in the

list is read. It is executed and the data buffer assigned to it, is written. Other actions can be defined

into the element data like triggering an interrupt or setting flags. The linked list is processed one

descriptor at a time, if more RX descriptors are required for a given message, the next one into the list

is fetched and the process repeats itself. The process keeps going up to the last descriptor of the

linked list, a wrap will occur automatically at this time

If the size of the container is small, the RX message with few payload data may fit in but a larger one

would require several descriptors and containers. This approach optimizes the memory usage as the

number of containers used is very close to the effective size of the RX message received. However,

such strategy requires more descriptors and Data Containers.

If we consider the other way round, a large data container avoids splitting data buffers and limits the

number of descriptors. The main disadvantage would be the usage of more memory per descriptor.

This is up to the SW to find the best trade-off according to the CAN protocol and to the application

required. There is also the option to size the data container for every RX FIFO Queue differently,

leaving some flexibility of optimization.

Before receiving any RX message, the RX FIFO Queues must be started. In case some messages are

received and the RX FIFO Queue to write data is not active the RX message is rejected and an

RX_ABORT_IRQ interrupt is triggered to the system.

To give a status report and some information like timestamping, the MH is also able to write back

some elements in the RX or TX descriptors. Not all of them are written back but only the one having

the header data defined.

The same remark regarding TX descriptors and TX data buffer location into memory applies for the RX

descriptors and data buffers.

MH_1448

MH_773

MH_774

MH_775

MH_776

MH_777

MH_778

MH_779

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

162 | 306

The SW must always ensure that some RX descriptors in the RX FIFO Queue are always valid (VALID

bit set to 0). In case an RX descriptor is not valid, the RX FIFO Queue n is stopped and an interrupt

RX_FQ_IRQ is sent to the system. If the system provides a valid RX descriptor and restarts the RX FIFO

Queue n in time, the RX message may be written into memory, otherwise the message is rejected and

the interrupt RX_FQ_IRQ is triggered to the system.

Up to 1023 RX descriptors can be defined for an RX FIFO Queue. The size of the RX FIFO Queue is

defined such a way when the Last Descriptor is reached, the MH wraps automatically to its initial start

address to get the First Descriptor.

If for some reasons an RX FIFO Queue has an error, it is still possible to abort the execution of that

FIFO Queue. When such action is performed, the RX FIFO Queue will be considered as active as long

as the current data transfer assigned to an RX descriptor is not finished. This means no more fetches

are done and the RX FIFO Queue is set inactive.

Any issue related to an RX descriptor executed by an RX FIFO Queue will stop it right away. To identify

such issue, some interrupts are triggered to the system, RX_DESC_CRC_ERR or RX_DESC_REQ_ERR.

Despite this RX FIFO Queue is stopped, the others will keep going through their own RX descriptors.

An RX FIFO Queue is controlled and monitored using several registers and bit registers:

• The RX_FQ_START_ADD{n} (n € {0, 1, 2, …, 7}) bit register to define the start address of the

RX FIFO Queue n

• The RX_FQ_CTRL0.START[n] (n € {0, 1, 2, …, 7}) bit register to launch the RX FIFO Queue n

• The RX_FQ_CTRL1.ABORT[n] (n € {0, 1, 2, …, 7}) bit register to abort the execution of the

RX FIFO Queue n

• The RX_FQ_CTRL2.ENABLE[n] (n € {0, 1, 2, …, 7}) bit register to enable the RX FIFO Queue

n prior to use it

• The RX_FQ_SIZE{n}.MAX_DESC and RX_FQ_SIZE{n}.DC_SIZE (n € {0, 1, 2, …, 7}) bit register

to define respectively, the maximum number of RX descriptor before looping back to the

initial start address and the Data Container size for the RX FIFO Queue n

• The RX_FQ_ADD_PT{n} (n € {0, 1, 2, …, 7}) register to monitor the current address pointer of

the RX FIFO Queue n

• The RX_FQ_STS0.BUSY[n] and RX_FQ_STS0.STOP[n] (n € {0, 1, 2, …, 7}) bit registers to

know respectively, the status of the RX FIFO Queue n, busy (RX FIFO Queue is active) and

stopped or running or not started

• The RX_FQ_STS1.ERROR[n] and RX_FQ_STS1.UNVALID[n] (n € {0, 1, 2, …, 7}) bit registers

to identify the root cause of the RX FIFO Queue being stopped, an error is detected, or an

RX descriptor is invalid

MH_780

MH_781

MH_783

MH_784

MH_785

MH_786

MH_787

MH_788

MH_789

MH_790

MH_791

MH_792

MH_2165

MH_793

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

163 | 306

• The RX_FQ_INT_STS.RECEIVED[n] and RX_FQ_INT_STS.UNVALID[n] (n € {0, 1, 2, …, 7}) bit

registers to identify respectively, a message is received, and an invalid RX descriptor is

detected

An RX FIFO Queue is being controlled for any issue using common bit registers:

• The SFTY_INT_STS.RX_DESC_CRC_ERR and SFTY_INT_STS.RX_DESC_REQ_ERR bit registers to

identify respectively, any CRC issue on RX descriptor running in the RX FIFO Queue n and

non-expected RX descriptor

• The ERR_INT_STS.DP_RX_ACK_DO_ERR bit register to identify overflow on RX ACK data path

for the RX FIFO Queues

• The ERR_INT_STS.DP_RX_FIFO_DO_ERR bit register to identify overflow on RX DMA FIFO for

the RX FIFO Queues

• The ERR_INT_STS.DP_RX_SEQ_ERR bit register to identify if an issue occurs on the RX_MSG

interface

1.4.5.15.1 Fragmented Data Container

The RX Data Container can be defined into any location and so an RX message is split across several

area in the S_MEM. With such approach, an address pointer is given to the application for any RX

message data, no copy is performed. A new Data Container is then allocated to replace the one being

sent to the application. It is important to note that in case of an RX message is received into several

Data Containers, several address pointers will need to be provided. It is assumed that Data Containers

that belongs to the same message can only be released once all RX buffer data have been read.

When the MH has executed the Last Descriptor (the descriptor defined at the latest position in the

Descriptor linked list), it wraps automatically to the First descriptor automatically.

MH_794

MH_795

MH_796

MH_797

MH_798

MH_799

MH_800

MH_801

MH_802

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

164 | 306

RX FIFO QUEUE (Normal mode)

R
X

 D
a

ta
 C

o
n

ta
in

e
r

(N
*3

2
b

y
te

s
)

R
X

 D
a

ta
 C

o
n

ta
in

e
r

(N
*
3

2
b

y
te

s
)

R
X

 D
a

ta
 C

o
n

ta
in

e
r

(N
*
3

2
b

y
te

s
)

R0

R1

RD0

RD1

RDm-1

B
u

ff
e
r

RDk-1

RDi+j+2

RDi+j+1

Descriptor Linked-List

Element 2: TS0

Element 3: TS1

Element 0

Element 1: RX_AP

Element 2: TS0

Element 3: TS1

Element 0

Element 1: RX_AP

Element 2: TS0

Element 3: TS1

Element 0

Element 1: RX_AP

R
X

D
e

sc
ri

p
to

r
3

R
X

D
e
s
c
ri
p

to
r

4

R
X

D
e
s
c
ri
p

to
r

6

P
R

O
C

E
S

S
E

D
 I

N
 O

R
D

E
R

B
u
ff

e
r

Element 2: TS0

Element 3: TS1

Element 0

Element 1: RX_AP

R
X

D
e

sc
ri
p

to
r

5

R
X

 D
a

ta
 C

o
n

ta
in

e
r

(N
*
3

2
b

y
te

s
)

RD1

RD0

R1

R0

RDn-1

B
u
ff

e
r

Element 2: TS0

Element 3: TS1

Element 0

Element 1: RX_AP

R
X

D
e
s
c
ri
p
to

r
7

Element 2: TS0

Element 3: TS1

Element 0

Element 1: RX_AP

R
X

D
e
s
c
ri
p

to
r

1
Element 2: TS0

Element 3: TS1

Element 0

Element 1: RX_AP

R
X

D
e
s
c
ri
p

to
r

2

Element 2: Not used

Element 3: Not used

Element 0

Element 1: RX_AP

R
X

D
e
s
c
ri
p

to
r

0

Element 2: Not used

Element 3: Not used

Element 0

Element 1: RX_AP

R
X

D
e
s
c
ri
p

to
r

8

RDi+6

B
u

ff
e
r

RDi+5

RDi+4

RDi+3

RDi+2

RDi+1

RDi+j

RX Data Container

(N*32bytes)

RX Data Container

(N*32bytes)

RX Data Container

(N*32bytes)

RX Data Container

(N*32bytes)

R
X

 D
a

ta
 C

o
n

ta
in

e
r

(N
*3

2
b

y
te

s
)

RD2

B
u

ff
e
r

RD1

RD0

R2

R1

R0

RDi

Figure: RX FIFO Queue in Normal Mode (Fragmented data containers)

In some cases, the RX message can then be split across RX descriptor being at the top and at the

bottom of an RX FIFO Queue. This mode does make use of all the RX descriptors defined in a given RX

FIFO Queue. It may happen that the SW would prefer to rely on linear RX message, having in mind a

linear organization of data containers in S_MEM, see Continuous data container chapter.

MH_803

MH_804

MH_811

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

165 | 306

1.4.5.15.2 Continuous Data Container

As the RX data containers of the same message are spread to different location in L_MEM, it won’t be

easy for the SW to read the entire message. To get around this issue, the SW can decide to declare

the RX Data Container in a linear memory area and to have them continuous to each other as depicted

below.

RX FIFO QUEUE (Normal mode)

Descriptor Linked-List

Element 2: TS0

Element 3: TS1

Element 0

Element 1: RX_AP

Element 2: Not used

Element 3: Not used

Element 0

Element 1: RX_AP

Element 2: TS0

Element 3: TS1

Element 0

Element 1: RX_AP

R
X

D
e

s
c
ri

p
to

r
4

R
X

D
e

s
c
ri

p
to

r
8

R
X

D

e
s

c
ri
p

to
r

6

P
R

O
C

E
S

S
E

D
 I
N

 O
R

D
E

R

Element 2: TS0

Element 3: TS1

Element 0

Element 1: RX_AP

R
X

D
e

s
c
ri

p
to

r
5

Element 2: TS0

Element 3: TS1

Element 0

Element 1: RX_AP

R
X

D

e
s
c
r
ip

to
r

7

Element 2: TS0

Element 3: TS1

Element 0

Element 1: RX_AP

R
X

D

e
s
c
ri

p
to

r
2

Element 2: TS0

Element 3: TS1

Element 0

Element 1: RX_AP

R
X

D

e
s
c
ri

p
to

r
3

Element 2: Not used

Element 3: Not used

Element 0

Element 1: RX_AP

R
X

D
e

s
c
ri

p
to

r
0

Element 2: Not used

Element 3: Not used

Element 0

Element 1: RX_AP

R
X

D
e

s
c
ri

p
to

r
1

R
X

 D
a
ta

C
o

n
ta

in
e

r

(N
*3

2
b

y
te

s
)

R
X

 D
a

ta

C
o

n
ta

in
e
r

(N
*3

2
b

y
te

s
)

R
X

 D
a
ta

C
o

n
ta

in
e
r

(N
*3

2
b

y
te

s
)

R
X

 D
a
ta

C
o

n
ta

in
e

r

(N
*
3

2
b

y
te

s
)

RD2

B
u

ff
e

r

RD1

RD0

R2

R1

R0

RDi

RDi+j+1

RDi+j+2

RDk-1

B
u

ff
e

r

RD1

RD0

R1

R0

RDm-1

B
u

ff
e

r

R0

R1

RD0

RD1

RDn-1

B
u

ff
e
r

RX Data Container
(N*32bytes)

RX Data Container

(N*32bytes)

RX Data Container

(N*32bytes)

RX Data Container

(N*32bytes)

R
X

 D
a
ta

C
o

n
ta

in
e
r

(N
*3

2
b

y
te

s
)

RDi+6

B
u

ff
e
r

RDi+5

RDi+4

RDi+3

RDi+2

RDi+1

RDi+j

Figure: RX FIFO Queue in Normal Mode (Continuous Data Containers)

This way of managing the RX message will have the main advantage to provide an RX message written

in a linear memory area, despite being split in several data containers. The current RX message will

not be aligned right at the end of a data container. Thus, there will be free memory space in between

RX messages but this may be acceptable for a SW point of view.

MH_812

MH_814

MH_815

MH_813

MH_816

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

166 | 306

The only exception would be when the Last Descriptor is used, and the message size exceed the Data

Container. The MH wraps and uses the First Descriptor to keep going with the current RX message

data. In this particular scenario the RX message data is split over the top and the bottom of the data

container and the same applies for the linked list holding the RX descriptor. This is normal behavior,

and it must not be an issue for the SW to read the RX message following the RX descriptor list from

bottom to top.

This configuration provides a pseudo linearity for the RX messages in S_MEM, excepted at the borders.

Doing so, the SW would need to perform a copy of the RX message data to free the memory area for

the new incoming messages. Such configuration does not require any update on address pointer in the

RX descriptors. Only the VALID bit needs to be written by the SW to acknowledge the reading of the

RX message and the update of the read address pointer register.

1.4.5.16 RX FIFO Queue in Continuous Mode

RX FIFO QUEUE (Continuous mode)

RX Data Container

(N*32bytes)

Descriptor Linked-List

Element 2: TS0

Element 3: TS1

Element 0

Element 1: RX_AP

Element 2: TS0

Element 3: TS1

Element 0

Element 1: RX_AP

Descriptor link list start

address defined in register

R
X

D
e

sc
ri

p
to

r
4

R
X

D
e
s
cr

ip
to

r
n

-2

P
R

O
C

E
S

S
E

D
 I

N
 O

R
D

E
R

Element 2: TS0

Element 3: TS1

Element 0

Element 1: RX_AP

R
X

D

e
s
cr

ip
to

r

n
-3

Element 2: TS0

Element 3: TS1

Element 0

Element 1: RX_AP

R
X

D
e

s
cr

ip
to

r
n
-1

Element 2: Not used

Element 3: Not used

Element 0

Element 1: RX_AP

R
X

D
e
sc

ri
p

to
r

2

Element 2: TS0

Element 3: TS1

Element 0

Element 1: RX_AP

R
X

D
e
s

cr
ip

to
r

3

R
X

D
e
sc

ri
p

to
r

0

Element 2: Not used

Element 3: Not used

Element 0

Element 1: RX_AP

R
X

D
e
s

cr
ip

to
r

1

RD2

B
u

ff
e
r

RD1

RD0

R2

R1

R0

RDi-7

RD1

RD0

R1

R0

RDm -1

R0

R1

RD0

RD1

RDn-1

B
u
ff

e
r

RDi -1

RDi-2

RDi-3

RDi-4

RDi-5

RDi-6

Head Descriptors:

Descriptor pointing to the start address

of the RX message in data container

Current Descriptor:

Descriptor executed by the MH

Next Descriptor:

Descriptor to be used as next in

the current RX FIFO Queue

Last Descriptor:

RX descriptor defined at the end

of the RX FIFO Queue

First Descriptor:

Descriptor defined by the RX FIFO Queue

start address

Element 2: TS0

Element 3: TS1

Element 0

Element 1: RX_AP

R
X

D
e

sc
ri
p
to

r
n

Element 2: TS0

Element 3: TS1

Element 0

Element 1: RX_AP

Data Container:

Linear memory

space assigned to

all RX message

received by a RX

FIFO Queue

Buffer:

Linear memory

space used by a RX

descriptor to write

RX data

Data Container start

address defined

register

Read address pointer

defined by SW in

register

RD1

RD0

R1

R0

B
u
ff

e
r

RD1

RD0

R1

R0

B
u
ff

e
r

B
u

ff
e
r

Data Container size

defined in register

Descriptor link list size

defined in register

Element 2: TS0

Element 3: TS1

Element 0

Element 1: RX_AP

R
X

D
e

sc
ri
p
to

r

n
-4

Figure: RX FIFO Queue in Continuous mode

MH_1820

MH_2184

MH_2185

MH_2186

MH_2225

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

167 | 306

The same principle, that is defined in the RX FIFO Queue in Normal mode, applies for the RX

descriptors in this Continuous mode. The way they are used, managed, and defined remain the same,

see RX FIFO Queue in Normal mode chapter.

The main difference comes from the structure of the RX message data being stored in the S_MEM.

An RX FIFO Queue when in Continuous mode is a list of RX descriptors pointing to a large and single

data container to store all the RX messages received by the PRT.

The RX filtering rules, programmed by the SW, define if a message is rejected or accepted. In case it is

accepted or rejected, it is decided which RX FIFO Queue receives the message. If a message is

rejected, it won’t appear in any of the FIFOs. Each one is fully independent from the others. The MH

appends to RX FIFO Queues new RX message as they arrive on the CAN Bus. The RX filter builds those

queues over time with messages based on the filtering results. It is up to the SW to read them in time.

The mechanism to manage RX FIFO Queues is based on the concept of linked list. Any RX FIFO Queue

when in Continuous mode is defined using a linked list of RX descriptors and a large data container.

As messages are received in a continuous way, the RX FIFO Queue are used in a circular buffer mode.

This means, when the Last Descriptor is reached, the MH will consider the First Descriptor as the next

descriptor. The Last Descriptor is defined by the size of the RX FIFO Queue and the start address of

the RX FIFO Queue.

The RX filter observes all incoming RX messages to identify the right RX FIFO Queue. Once defined,

the current RX descriptor attached to the selected RX FIFO Queue is fetched and used to define the

new incoming RX message data.

The MH will proceed in the same way with all the RX FIFO Queues. As the RX FIFO Queue selected

depends on the RX filtering result, the RX FIFO Queues will be filled up at a different rate.

Every RX FIFO Queue can be managed individually, SW can decide to enable or disable any queue

according to the way RX messages must be managed. Once the RX filter is defined and the PRT is

receiving messages, any change on the RX FIFO Queue setting is not possible. There is still a

mechanism to abort and flush an RX FIFO Queue while others are running.

Once an RX FIFO Queue is started and an RX message needs to be written in its corresponding data

container, the First descriptor in the descriptor list is read. It is executed and the initial start address

of the data container assigned to it. The linked list processes one descriptor at a time every time a

new RX message is received by the same RX FIFO Queue. The process continues up to the Last

descriptor of the linked list before making a wrap.

Other actions can be defined in the RX descriptor, like triggering an interrupt or setting flags.

The MH writes messages as they arrive, to avoid overwriting. The SW needs to write the address value

of the current message being read to a MH register. Therefore, the MH can compute the exact memory

left to be used by the new RX message.

MH_2188

MH_2189

MH_2190

MH_2192

MH_2194

MH_2195

MH_2196

MH_2197

MH_2227

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

168 | 306

The size of the data container is programmable to store numerous CAN XL messages, if required. Up

to RX_FQ_SIZE{n}.DC_SIZE[11:0] * 32byte data container size can be defined for an RX FIFO Queue n.

As the size is programmable per RX FIFO Queue, it is then possible to limit the memory footprint

according to the expected message to be received.

Before receiving any RX message, the RX FIFO Queues must be started. In case some messages are

received and the RX FIFO Queue to write data is not active, the RX message is rejected and an

RX_ARBORT_IRQ interrupt is triggered to the system.

To give a status report and some information like timestamping, the MH is also able to write back

some elements in the RX or TX descriptors. Not all of them are written back but only the one having

the header data defined.

The same remark, regarding TX descriptors and TX data buffer location into memory, applies for the

RX descriptors and data buffers.

The SW must always ensure that some RX descriptors in the RX FIFO Queue are always valid (VALID

bit set to 0). In case an RX descriptor is not valid, the RX FIFO Queue n is stopped and an interrupt

RX_FQ_IRQ is sent to the system. If the system provides a valid RX descriptor and restarts the RX FIFO

Queue n in time, the RX message may be written into memory, otherwise the message is rejected and

the interrupt RX_FQ_IRQ is triggered to the system.

In the Continuous mode, one RX descriptor is assigned to one message, thus, once the SW has read

the message in the data container, the VALID bit can be set to 0 right away. The SW must indicate to

the MH, using the RX_FQ_RD_ADD_PT{n} (n € {0, 1, 2, …, 7}) registers, the address pointer value of

the last word read from S_MEM. The MH uses this information to estimate if the incoming message

data can be written safely in the data container.

Up to 1023 RX descriptors can be defined for an RX FIFO Queue. The size of the RX FIFO Queue is

defined such that when the Last Descriptor is reached, the MH wraps to its initial start address to

fetch the First Descriptor. As the RX FIFO Queue size for the RX descriptors is defined at the first time

and cannot be changed once the RX FIFO Queue is started, the MH wraps automatically to keep going.

If, for some reasons, an RX FIFO Queue has an error, it is still possible to abort the execution of that

FIFO Queue. When such action is performed, the RX FIFO Queue will be considered as active, as long

as the current data transfers, assigned to an RX descriptor, are not finished. This means, there is no

pending transaction attached to the RX FIFO Queue, this includes the RX descriptor acknowledge

when a RX message is received. The RX_FQ_IRQ interrupt is triggered to the system, if enable, once

the last RX message is received by the aborted RX FIFO Queue n.

Any issue related to an RX descriptor that is executed by an RX FIFO Queue will stop it right away. To

identify such issue, some interrupts are triggered to the system, RX_DESC_CRC_ERR or

RX_DESC_REQ_ERR. Despite of having this RX FIFO Queue stopped, the other ones will keep going

through their own RX descriptors.

MH_2198

MH_2201

MH_2202

MH_2203

MH_2204

MH_2205

MH_2207

MH_2208

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

169 | 306

An RX FIFO Queue is controlled and monitored using several registers and bit registers:

• Refer to the list of registers already defined for the Normal mode

• The RX_FQ_DC_START_ADD{n} (n € {0, 1, 2, …, 7}) register to be written by the SW to

indicate to the MH the read address pointer in the data container for the RX FIFO Queue n

• The RX_FQ_STS2.DC_FULL[n] (n € {0, 1, 2, …, 7}) bit register to identify the root cause of

the RX FIFO Queue being stopped, there is no space left on the S_MEM to write new RX

data. This issue may occur only if the MH is set to Continuous Mode.

An RX FIFO Queue is being controlled for any issue using common bit registers:

• Refer to the list of registers already defined for the Normal mode

1.4.5.17 TX FIFO Queue Data Flow

The SW defines the TX descriptors for every TX FIFO Queues to be used and declares the TX data

buffers assigned to those TX descriptors.

As soon as the TX FIFO Queues are started, the TX MH will process and fetch all the relevant TX

descriptors and will store them in the L_MEM for arbitration.

Only the TX message with the highest priority ID is sent first. Those messages will compete against

the one defined in the TX Priority Queue. Only the TX descriptor holding the header data is written

back with status information of the data transfer and a timestamp. As soon as a TX descriptor, from a

TX FIFO Queue, is in use, the next one will be uploaded. The TX MESSAGE HANDLER manages the

request for a new descriptor on its own, whenever this is required.

The following data flow describes how the TX FIFO Queues are running in parallel.

Here are the different steps when a TX message is selected and/or used:

Step 1: After transmitting a TX message from the TX FIFO queue n, the TX MESSAGE HANDLER will

send a request to the DESCRIPTOR MESSAGE HANDLER for the next TX descriptor from that queue.

Step 2: The relevant TX descriptor of the TX FIFO Queue is fetched by the DESCRIPTOR MESSAGE

HANDLER and is written to the L_MEM.

Step 3: As soon as the new TX descriptor is completely written into the L_MEM, an arbitration run is

performed. This arbitration will identify, which TX descriptor has the highest priority, looping through

the current TX descriptor for every TX FIFO Queues and through all the slots of the TX Priority Queue

declared as active. Once the two first candidates (Priority Queue slot number or TX FIFO queue

number) are defined, they are loaded in the TX MESSAGE HANDLER.

Step 4: The TX MESSAGE HANDLER then tries to upload the TX message with the highest priority

locally. If a TX message is in progress, the TX MESSAGE HANDLER will wait for the end of the current

transmission to read the complete TX descriptor from the L_MEM. If nothing prevents the upload of

MH_2209

MH_2231

MH_2229

MH_2166

MH_2220

MH_2221

MH_821

MH_822

MH_823

MH_824

MH_825

MH_826

MH_827

MH_828

MH_829

MH_830

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

170 | 306

the next descriptor, it will be done right away. As soon as the TX descriptor is locally stored, the first

TX message data are sent to the PRT. The TX MESSAGE HANDLER will wait for the PRT to know if it

has won the arbitration process. As long as no new TX descriptor changes the arbitration result, the

selected TX descriptor remains in the TX MESSAGE HANDLER for further arbitrations. As soon as the

TX message is winning the arbitration, all the data contained into the TX descriptor are sent to the

PRT.

Step 5: The payload data assigned to the TX descriptor is fetched from the S_MEM.

Step 6: If the TX message is sent successfully on the CAN bus, an acknowledge request is sent to the

DESCRIPTOR MESSAGE HANDLER with the status and information of the transfer. The DESCRIPTOR

MESSAGE HANDLER writes back the acknowledge of that descriptor in the S_MEM. When the

DESCRIPTOR MESSAGE HANDLER has finished writing the TX descriptor, an interrupt TX_FQ_IRQ[n]

for the TX FIFO Queue n may be triggered to the system.

As all TX FIFO Queue are processed the same way, the data flow of only one TX FIFO Queue is

depicted in figure below with the reference number for each step.

S_MEM

T0

T1

TD4 / TD5

TDn-2 / TDn-1

MESSAGE HANDLER

DMA MESSAGE

HANDLER

TX MESSAGE

HANDLER

HOST

CPU

LOCAL

MEMORY

CONTROLLER

TD0

TD1

TD2

TD3

TDn-1

Element 4: T0

Element 5: T1

Element 6: T2 / TD0

Element 2: set to 0

Element 3: set to 0

Element 0

Element 1

Element 7: TX_AP / TD1

T
X

 D
e

s
c

ri
p

to
r

DMA READ

CHANNEL 1

DMA READ

CHANNEL 2

N
 x

 B
u

rs
t

1
 B

u
rs

t

T
X

 P
a

y
lo

a
d

TX Data Container

TX Data Container

TX Data Container

TX FIFO Queue

Descriptor linked-list

TX FIFO Queue data
containers

Element 4: T0

Element 5: T1

Element 6: T2

Element 4: T0

Element 5: T1

Element 6: TD0

Element 7: TD1

Element 2: TS0

Element 3: TS1

Element 0

Element 1

Element 2: TS0

Element 3: TS1

Element 0

Element 1

Element 7: TX_AP

Element 4: T0

Element 5: T1

Element 6: TD0

Element 7: TX_AP

Element 2: TS0

Element 3: TS1

Element 0

Element 1

Tx linked-list start

address register

TD0

TD1

TD2

TD3

TDn-1

TD2

M
u

lt
ip

le
 o

f
3

2
B

yt
e

s

T
X

 E
le

m
e

n
t

D
e

s
c

ri
p

to
r

0
T

X
 E

le
m

e
n

t
D

e
sc

ri
p

to
r

1
T

X
 E

le
m

e
n

t
D

e
sc

ri
p

to
r

n

P
R

O
C

E
S

S
E

D
 I
N

 O
R

D
E

R

TD0

TD1

DESCRIPTOR
MESSAGE

HANDLER

Element 2: TS 0

Element 3: TS 1

Element 0

Element 1

T
X

 A
c

kn
o

w
le

d
g

e

DMA WRITE

CHANNEL 0

T
X

 A
c

kn
o

w
le

d
g

e

TD0

TD1

TD1 / TD2

TD2 / TD3

TD3 / TD4

T2 / TD0

TD0 / TD1

M
u

lti
p

le
 o

f
3

2
B

y
te

s

L_MEM

TX FIFO Queue
Descriptors

Element 4: T0

Element 5: T1

Element 6: T2

Element 7: TX_AP

F
IF

O
 Q

u
e

u
e

 0

T
X

 D
e

sc
ri

p
to

r

Element 0

Element 4: T0

Element 5: T1

Element 6: TD0

Element 7: TD1

T
X

 D
e

s
cr

ip
to

r

Element 0

Element 4: T0

Element 5: T1

Element 6: TD 0

Element 7: TX _AP

T
X

 D
e

s
c

ri
p

to
r

Element 0

CAN TDn-1 /

3
2

B
y

te
s

Element 1

Element 1

Element 1

Element 4: T0

Element 5: T1

Element 6: T2 / TD0

Element 7: TX _AP / TD1 T
X

 E
le

m
e

n
t

D
e

sc
ri

p
to

r
n

Element 0

Element 1

F
IF

O
 Q

u
e

u
e

 1
F

IF
O

 Q
u

e
u

e
 N

-1

TX FIFO Queue

1
5

2

3

Current TX

Descriptor

4

M
E

M
_
A

X
I

6

S
L

O
T

 0
S

L
O

T
 3

1

Element 4: T0

Element 5: T1

Element 6: T2

Element 7: TX_AP

Element 0

Element 4: T0

Element 5: T1

Element 6: TD0

Element 7: TX_AP

Element 0

Element 1

Element 1

T
X

 D
e

sc
ri

p
to

r
T

X
 D

e
s

cr
ip

to
r

PROTOCOL

CONTROLLER

TXD

CPU read and write data path

TX descriptor acknowledge write data path

TX descriptor read and write data path

TX message read payload data path

TX-Scan read data path

TX Header descriptor read data path

T
X

_
M

S
GD

M
A

_
A

X
I

Figure: TX FIFO Queue data flow

MH_2960

MH_2961

MH_834

MH_2958

MH_836

MH_837

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

171 | 306

1.4.5.18 TX Priority Queue Data Flow

The SW defines the TX descriptors, that have to be sent to the TX Priority Queue slot and declares the

TX data buffers assigned to those TX descriptors. Once this is done, the SW triggers the TX MESSAGE

HANDLER to have those messages sent as soon as possible. Those messages will compete against the

one defined in the TX FIFO Queues. Only the ID is relevant for the selection of TX messages.

As soon as the TX Priority Queue slots are started, the TX MESSAGE HANDLER will process and fetch

all the relevant TX descriptors and will store them in the L_MEM for arbitration.

When a TX message is sent, an acknowledge (status information and timestamp) is written back to the

TX descriptor holding the header data. As soon as a TX descriptor is fully executed from a TX Priority

Queue slot, it will be considered as inactive and won’t be considered afterwards.

There is a way to keep track of the TX descriptors used for the TX Priority Queue, refer to the Trace

and Debug chapter.

The following data flow is relevant for all TX Priority Queue slots.

Here below are the different steps when a TX message is selected and/or used:

Step 1: To trigger the TX message defined in the TX Priority Queue, the SW must write the start bit of

the corresponding slot. Nothing prevents the SW to declare several TX messages at the same time and

to launch them at once. The TX MESSAGE HANDLER sends requests to the DESCRIPTOR MESSAGE

HANDLER for the TX descriptors to be fetched. If several TX descriptors need to be uploaded at once,

they would be fetched in the order of their slot number, starting with 0

Step 2: The relevant TX descriptors of the TX FIFO Queue is fetched by the DESCRIPTOR MESSAGE

HANDLER and is written to the L_MEM.

Step 3: As soon as the new TX descriptor is completely written to the L_MEM, an arbitration run is

performed and only the TX descriptor uploaded for the slot will be considered. This arbitration will

identify which TX descriptor has the highest priority, looping through the current TX descriptor for

every TX FIFO Queue and through all slots of the TX Priority Queue that are declared as active. This

selection is performed by doing a single read on all defined TX descriptor in the L_MEM. Once the two

first candidates are identified, either the TX Priority Queue Slot number and/or the TX FIFO queue

number, they are stored locally in the TX MESSAGE HANDLER.

Step 4: The TX MESSAGE HANDLER then tries to upload the TX descriptor with the highest priority

locally. If a TX message is in progress, the TX MESSAGE HANDLER will wait for the end of the current

transmission to read from the L_MEM the complete TX descriptor. If nothing prevents the upload of

the next descriptor, it will be done immediately. As soon as the TX descriptor is stored locally, the

first TX message data are sent to the PRT. The TX MESSAGE HANDLER will wait for the PRT to get the

information if it has won the arbitration process. As long as no new TX descriptor changes the

arbitration result, the selected TX descriptor remains in the TX MESSAGE HANDLER for further

MH_838

MH_839

MH_840

MH_2946

MH_841

MH_842

MH_843

MH_844

MH_845

MH_846

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

172 | 306

arbitrations. As soon as the TX message wins the arbitration, all the data contained in the TX

descriptor are sent to the PRT.

Step 5: The payload data assigned to the TX descriptor is fetched from the S_MEM.

Step 6: If the TX message is sent successfully on the CAN bus, an acknowledge request is sent to the

DESCRIPTOR MESSAGE HANDLER with the status and information of the transfer. The DESCRIPTOR

MESSAGE HANDLER writes the acknowledge of that descriptor back to the S_MEM. When the

DESCRIPTOR MESSAGE HANDLER has finished writing the TX descriptor, an interrupt TX_PQ_IRQ for

any of the TX Priority Queue slot may be triggered to the system. Once the acknowledge is written, the

slot is considered as invalid and won’t be used for the next arbitration run, up to the time, where the

SW sets it back to active.

As all the TX Priority Queue slots are processed the same way, the data flow of one slot is depicted in

the figure below with the reference number for each step.

S_MEM
L_MEM

MESSAGE HANDLER

TX MESSAGE

HANDLER

HOST

CPU

LOCAL MEMORY

CONTROLLER

TX Priority Queue

Descriptors

DMA MESSAGE

HANDLER

DMA READ

CHANNEL 1

DMA READ

CHANNEL 0

DMA WRITE

CHANNEL 0

DESCRIPTOR

MESSAGE

HANDLER

REGISTER

BANK

Element 2: TS0

Element 3: TS1

Element 0

Element 1

T
X

 A
ck

n
o

w
le

d
g

e

T
X

 A
c

kn
o

w
le

d
g

e

Element 4: T0

Element 5: T1

Element 6: T2 / TD0

Element 7: TX _AP / TD1

T
X

 D
e

s
cr

ip
to

r

Element 0

Element 1

Element 4: T0

Element 5: T1

Element 6: T2 / TD0

Element 2: set to 0

Element 3: set to 0

Element 0

Element 1

Element 7: TX_AP / TD 1

T
X

 D
e

s
c

ri
p

to
r

1
 B

u
rs

t

T0

T1

TD4 / TD5

TDn-2 / TDn-1

TD1 / TD2

TD2 / TD3

TD3 / TD4

T2 / TD 0

TD0 / TD1

CAN TDn-1 /

TX Priority Queue slots of
descriptor

TX Data Buffer

TD0

TD1

TD2

TD3

TDn-1

TD2

TD3

TD15

TDm-1B
u

ff
e

r
m

u
lti

p
le

 o
f

3
2

b
y

te
s TD0

TD1

TD0

TD1

B
u

ff
e

r
m

u
lti

p
le

 o
f

3
2b

y
te

s
3

2
B

yt
e

s

P
R

O
C

E
S

S
E

D
 I
N

 A
N

Y
 O

R
D

E
R

Up to 32 slots

Element 4: T0

Element 5: T1

Element 6: T2

Element 4: T0

Element 5: T1

CAN TD0

CAN TD1

Element 2: TS0

Element 3: TS1

Element 0

Element 1

Element 2: TS0

Element 3: TS1

Element 0

Element 1

Element 7: TX_AP

Element 4: T0

Element 5: T1

CAN TD0

Element 7: TX_AP

Element 2: TS0

Element 3: TS1

Element 0

Element 1

T
X

 D
e

s
c

ri
p

to
r

S
L

O
T

 0

T
X

 D
e

sc
ri

p
to

r

S
L

O
T

 1

T
X

 D
e

s
c

ri
p

to
r

S
L

O
T

 3
1

TX Priority Queue

start address register

TD0

TD1

TD2

TD3

TDn-1 N
 x

 B
u

rs
t

T
X

 P
a

y
lo

a
d

T
X

_
M

S
G

H
O

S
T

_
A

X
I

3
M

E
M

_
A

X
I

4

5

2

1

D
M

A
_
A

X
I6

Element 4: T0

Element 5: T1

Element 6: T2

Element 7: TX_AP

F
IF

O
 Q

u
e

u
e

 0

Element 0

Element 4: T0

Element 5: T1

Element 6: TD0

Element 7: TD1

Element 0

Element 4: T0

Element 5: T1

Element 6: TD0

Element 7: TX_AP

Element 0

Element 1

Element 1

Element 1
F

IF
O

 Q
u

e
u

e
 1

F
IF

O
 Q

u
e

u
e

 N
-1

S
L

O
T

 0
S

L
O

T
 3

1

Element 4: T0

Element 5: T1

Element 6: T2

Element 7: TX _AP

Element 0

Element 4: T0

Element 5: T1

Element 6: TD0

Element 7: TX _AP

Element 0

Element 1

Element 1

T
X

 D
e

sc
ri

p
to

r
T

X
 D

e
s

cr
ip

to
r

T
X

 D
e

s
cr

ip
to

r
T

X
 D

e
sc

ri
p

to
r

T
X

 D
e

s
cr

ip
to

r

PROTOCOL
CONTROLLER

TXD

CPU read and write data path

TX descriptor acknowledge write data path

TX descriptor read and write data path

TX message read payload data path

TX-Scan read data path

TX Header descriptor read data path

TX Priority Queue

Figure: TX Priority Queue data flow

1.4.5.19 RX FIFO Queue Data Flow in Normal Mode

The SW needs to prepare the RX filter elements required to accept or reject RX messages. Once done,

the SW writes those elements to the L_MEM. The SW cannot access this memory directly in write

MH_2962

MH_2963

MH_850

MH_2959

MH_852

MH_853

MH_854

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

173 | 306

mode through the HOST bus interface. As a consequence, the L_MEM must provide a way to protect

the memory space allocated to the RX filtering elements from being read by any other masters.

The SW defines the RX descriptors for every RX FIFO Queue to be used and allocates the RX data

buffers assigned to those RX descriptors.

As soon as the RX FIFO Queues are started, any RX messages will be filtered, meaning rejected or

accepted, and are stored in the S_MEM when required.

Here below are the different steps when receiving an RX message:

Step 1: As soon as the RX message data R0, R1 and R2 are received, the RX filtering is started. All the

incoming data are locally stored in the RX MESSAGE HANDLER, waiting for the result of RX filtering.

The RX MESSAGE HANDLER identifies RX FIFO Queue to be used

Step 2: The RX MESSAGE HANDLER sends an RX descriptor request to the DESCRIPTOR MESSAGE

HANDLER

Step 3: The relevant RX descriptor of the queue identified and fetched by the DESCRIPTOR MESSAGE

HANDLER is given to the RX MESSAGE HANDLER

Step 4: The RX MESSAGE HANDLER uses the address pointer of the RX descriptor to write the

message data to the S_MEM as soon as a complete burst is available. As long as the data buffer can

accept message data, the process of writing can continue. In case that the last data can be written

into the data buffer pointed by the current RX descriptor, go to Step 6, otherwise the next RX

descriptor of the same queue is requested to the DESCRIPTOR MESSAGE HANDLER

Step 5: When the current RX descriptor is about to be completed, the new RX descriptor must be

available for the next DMA data transfer, hereby go to Step 3

Step 6: The RX MESSAGE HANDLER gets the status of the last part of the RX message and the

information of the latest data transfers. Those data are sent to the DESCRIPTOR MESSAGE HANDLER

to be written back as an acknowledge to RX descriptor in the S_MEM holding the header. The

timestamp and report status of the RX message are written at the same time. When the DESCRIPTOR

MESSAGE HANDLER has finished writing the RX descriptor, an interrupt RX_FQ_IRQ for the RX FIFO

Queue n may be triggered to the system

As all the RX FIFO Queues are processed the same way, the data flow of only one RX FIFO Queue is

depicted in figure below with the reference number for each step.

MH_855

MH_856

MH_857

MH_858

MH_859

MH_860

MH_861

MH_862

MH_863

MH_864

MH_865

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

174 | 306

S_MEM

L_MEM

MESSAGE HANDLER

RX MESSAGE

HANDLER

HOST CPU

LOCAL MEMORY

CONTROLLER

DMA MESSAGE

HANDLER

DMA WRITE

CHANNEL 1

Filter Element 0

Filter Element 1

Filter Element 2

Filter Element P-2

Reference Value 0

Reference Mask 0

Reference Value 1

Reference Mask 1

Reference Value Q-1

Reference Mask Q-1

Filter Element P-1

R0

R1

R2 / RD0

RD0 / RD1

RDi-2 / RDi-1R
X

 P
ay

lo
ad

N
 x

 B
ur

s
t

Protected Area

Filter Elements and

References

Filter Element 0

Filter Element 1

Filter Element 2

Filter Element P-2

Reference Value 0

Reference Mask 0

Reference Value 1

Reference Mask 1

Reference Value Q-1

Reference Mask Q-1

Filter Element P-1

R
e

fe
re

n
c

es

DMA READ

CHANNEL 0

DESCRIPTOR

MESSAGE

HANDLER

Element 2: TS0

Element 3: TS1

Element 0

Element 1: RX_AP

R
X

 A
c

kn
o

w
le

d
g

e

R
X

 A
ck

n
o

w
le

d
g

e

DMA WRITE

CHANNEL 0

Element 0

Element 1: RX_AP

R
X

 D
e

s
cr

ip
to

r

R
X

 D
e

sc
ri

pt
or

F
ilt

e
r

E
le

m
e

n
ts

R
e

fe
re

nc
e

s

F
il

te
r

E
le

m
e

nt
s

R0

R1

RD4 / RD5

RDn-2 / RDn-1

RD1 / RD2

RD2 / RD3

RD3 / RD4

R2 / RD0

RD0 / RD1

RDn-1 /

RX Data Container

RX Data Container

RX Data Container

RX Data Container

RX FIFO Queue data

containers

RX Buffer

R0

R1

RD0

RX Buffer

RD(Kx16)+5

RD1

RD2

RD25

RD(Kx16)+4

RD(Kx16)+3

RD(Kx16)+2

RD(Kx16)+1

RD(Kx16)

RX FIFO Queue

descriptor linked - list

Element 2: TS0

Element 3: TS1

Element 0

Element 1: RX_AP

Element 2: Not used

Element 3: Not used

Element 0

Element 1: RX_AP

Element 2: TS0

Element 3: TS1

Element 0

Element 1: RX_AP

Rx linked-list start
address register

R
X

 D
es

cr
ip

to
r

0
R

X
 D

es
cr

ip
to

r
1

R
X

 D
e

sc
ri

pt
or

 2

P
R

O
C

E
S

S
E

D
 I
N

 O
R

D
E

R

RD(Kx16-1)

RX Buffer
R0

R1

R2

RD0

RD1

6
4B

yt
es

6
4

B
yt

e
s

6
4

B
yt

e
s

2

3

1

4

R
X

_
M

S
G

MEM_AXI

Element 2: TS0

Element 3: TS1

Element 0

Element 1: RX_AP

R
X

 D
e

s
cr

ip
to

r
n Current RX

Descriptor

5 D
M

A
_
A

X
I6

PROTOCOL

CONTROLLER

CAN_RX

5

CPU read and write data path

RX descriptor acknowledge write data path

RX descriptor read data path

RX message write data path

RX Filter read data path

RX FIFO Queue

RX Buffer
R0

R1

RD0

RD1

64
B

yt
e

s

Figure: RX FIFO Queue data flow in Normal Mode

1.4.5.20 RX FIFO Queue Data Flow in Continuous Mode

The SW needs to prepare the RX filter elements required to accept or reject RX messages. Once done,

the SW writes those elements to the L_MEM. The SW cannot access this memory directly in write

mode through the HOST bus interface. As a consequence, the L_MEM must provide a way to protect

the memory space allocated to the RX filtering elements from being read by any other masters.

The SW defines the RX descriptors for every RX FIFO Queue to be used and allocates the single data

container for each of them.

As soon as the RX FIFO Queues are started, any RX messages will be filtered, meaning rejected or

accepted, and stored into the S_MEM when required.

Here below are the different steps when receiving an RX message:

MH_866

MH_2694

MH_2695

MH_2696

MH_2697

MH_2698

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

175 | 306

Step 1: As soon as the RX message data R0, R1 and R2 are received, the RX filtering is started. All the

incoming data are stored locally in the RX MESSAGE HANDLER waiting for the result of RX filtering.

The RX MESSAGE HANDLER identifies RX FIFO Queue to be used

Step 2: The RX MESSAGE HANDLER sends an RX descriptor request to the DESCRIPTOR MESSAGE

HANDLER

Step 3: The relevant RX descriptor of the queue identified and fetched by the DESCRIPTOR MESSAGE

HANDLER is given to the RX MESSAGE HANDLER

Step 4: The RX MESSAGE HANDLER holds the RX descriptor of that RX FIFO queue for further

purpose. In case the current RX message cannot fit in the remaining space of the data container, the

message is automatically written at the top (if possible). The message data are written to the S_MEM

starting after the last RX message stored in the data container. As soon as a complete burst is

available, it is written, and this process continues up to the last RX message data.

Step 5: The RX MESSAGE HANDLER gets the status of the last part of the RX message and the

information of the latest data transfers. Those data are sent to the DESCRIPTOR MESSAGE HANDLER

to be written back as an acknowledge to the RX descriptor fetched earlier from the S_MEM. The

timestamp, the address of the RX message inside the data container and a report status of the RX

message are written at the same time. When the DESCRIPTOR MESSAGE HANDLER has finished

writing the RX descriptor, an interrupt RX_FQ_IRQ for the RX FIFO Queue n may be triggered to the

system.

As all the RX FIFO Queues are processed the same way, the data flow of only one RX FIFO Queue is

depicted in the figure below with the reference number for each step.

MH_2699

MH_2700

MH_2701

MH_2702

MH_2703

MH_2705

MH_2706

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

176 | 306

S_MEM

L_MEM

MESSAGE HANDLER

RX MESSAGE

HANDLER

HOST CPU

LOCAL MEMORY

CONTROLLER

DMA MESSAGE

HANDLER

DMA WRITE

CHANNEL 1

Filter Element 0

Filter Element 1

Filter Element 2

Filter Element P-2

Reference Value 0

Reference Mask 0

Reference Value 1

Reference Mask 1

Reference Value Q-1

Reference Mask Q-1

Filter Element P-1

R0

R1

R2 / RD0

RD0 / RD1

RDi-2 / RDi-1R
X

 P
a

yl
o

a
d

N
 x

 B
u

rs
t

Protected Area

Filter Elements and
References

Filter Element 0

Filter Element 1

Filter Element 2

Filter Element P-2

Reference Value 0

Reference Mask 0

Reference Value 1

Reference Mask 1

Reference Value Q-1

Reference Mask Q-1

Filter Element P-1

R
e

fe
re

n
ce

s

DMA READ
CHANNEL 0

DESCRIPTOR

MESSAGE

HANDLER

Element 2: TS0

Element 3: TS1

Element 0

Element 1: RX_AP

R
X

 A
c

kn
o

w
le

d
ge

R
X

 A
c

kn
o

w
le

d
g

e

DMA WRITE
CHANNEL 0

Element 0

Element 1: RX_AP

R
X

 D
e

sc
ri

pt
or

R
X

 D
e

sc
rip

to
r

F
il

te
r

E
le

m
e

n
ts

R
ef

er
e

n
ce

s

F
ilt

e
r

E
le

m
e

n
ts

R0

R1

RD4 / RD5

RDn-2 / RDn-1

RD1 / RD2

RD2 / RD3

RD3 / RD4

R2 / RD0

RD0 / RD1

RDn-1 /

RX Data Container
(Nx64Byte)

R0

R1

RD0

RD1

RD2

RD25

RX FIFO Queue
Descriptor linked -list

Element 2: TS0

Element 3: TS1

Element 0

Element 1: RX_AP

Element 2: TS0

Element 3: TS1

Element 0

Element 1: RX_AP

Element 2: TS0

Element 3: TS1

Element 0

Element 1: RX_AP

Rx linked-list start
address register

R
X

 D
e

sc
ri

pt
or

 0
R

X
 D

e
sc

ri
p

to
r

1
R

X
 D

e
sc

rip
to

r
2

P
R

O
C

E
S

S
E

D
 I

N
 O

R
D

E
R

RD2

R0

R1

R2

RD0

RD1

RD240

2

3

1

4

R
X

_
M

S
G

MEM_AXI

Element 2: TS0

Element 3: TS1

Element 0

Element 1: RX_AP

R
X

 D
e

s
cr

ip
to

r
n Current RX

Descriptor

D
M

A
_
A

X
I5

PROTOCOL

CONTROLLER

CAN_RX

RD2

R0

R1

R2

RD0

RD1

R0

R1

R2

RD0

RD1

RD2

RD40

RD2

RD129

RX FIFO Queue

CPU read and write data path

RX descriptor acknowledge write data path

RX descriptor read data path

RX message write data path

RX Filter read data path

Figure: RX FIFO Queue data flow in Continuous Mode

1.4.5.21 TX-SCAN

To avoid any misunderstanding when talking about the selection of the next TX message to be sent to

the PRT, the term TX-SCAN is used to define this process.

To arbitrate TX FIFO queues and cope with high latency in S_MEM, the TX Header Descriptor of every

active TX FIFO Queues are stored into the L_MEM. The same applies for the TX Priority Queue slots

when they are declared as active. It means up to 8 TX FIFO Queues Header Descriptor can be declared

in L_MEM and up to 32 for the TX Priority Queue. Doing so, it becomes much easier to parse all the

active TX Header Descriptors locally to identify which TX message has the highest priority. The TX-

SCAN process would be very fast and the expected TX message order at CAN bus as close as possible

to the one expected by the SW.

The TX-SCAN uses the list of TX descriptors available in L_MEM. When a new TX descriptor is added, a

flag is set to indicate the availability of a new potential candidate. As long as the TX descriptor is not

executed or discarded, it will remain as a valid candidate, see TX_FQ_DESC_VALID and

TX_PQ_DESC_VALID registers.

MH_2707

MH_867

MH_868

MH_869

MH_870

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

177 | 306

Event to trigger a TX-SCAN run:

• A new TX message written in a TX Priority Queue slot

• A TX message sent successfully

• A TX message discarded after N re-transmissions

• A SW abort of a TX Priority Queue slot

• A SW abort of a TX FIFO Queue

• A TX message rejected by the TX Filter

• A TX message starting to be sent (in case of TX FIFO Queue, triggers the fetch of the next

descriptor)

Any new TX message appended to a TX FIFO Queue does not trig a new TX-SCAN. The MH is only

processing TX descriptor one after the other in every TX FIFO Queue, it does not know if a new

message is added to one of them.

A re-transmission counter defines the number of re-transmissions allowed to the same TX message

when this one is unsuccessful. For every trial of the same TX message, the re-transmission counter is

incremented and compared to a maximum value defined in the MH_CFG.MAX_RETRANS[2:0]. If the

counter exceeds the limit, the current TX message will no longer be considered and is skipped, the

next TX message is taken instead. The re-transmission counter is set back to 0 when a new TX

message is selected. There is the option to define an unlimited number of trials for TX messages.

The maximum number of re-transmissions is defined by the register MH_CFG.MAX_RETRANS[2:0] and

covers the maximum value defined in CiA610-1.

Several options are defined:

• 0: No re-transmission

• 1 to 6: 1 to 6 re-transmissions

• 7: Unlimited re-transmissions (default value)

Here below is the definition of the 32bit priority value when considering Classical CAN, CAN FD, and

CAN XL. The fields XLF, FDF, XTD, RTR, SRR and ID (defined in CAN protocol [1] and [2]) are used to

determine the priority value of a given TX message. The priority value is computed for every TX

message and then compared with each other to identify the highest priority message (the lowest value

gives the highest priority message to transmit).

Only the T0 of the TX Header Descriptor is used for the selection of the highest priority message. As

the relevant bits are defined in T0 element, only a single read access from the L_MEM is required. This

would result to the following statement:

IMPORTANT: In Classical frame format, a data frame and a remote frame with the same identifier have

the same priority in the TX-Scan.

CAN
Protocol

Protocol Selection Priority Value

XLF
(T0[30])

FDF
(T0[31])

XTD
(T0[29])

31 down to 21 20 19 18 17 16 down to 1 0

Classic
CAN

0 0 0
T0[28:18]

(Base ID[10:0])
0

(RTR)
0

(XTD)
0

(FDF)
0 16'b0 0

MH_2857

MH_3023

MH_871

MH_872

MH_1805

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

178 | 306

Classic
CAN

(extend
ed ID)

0 0 1
T0[28:18]

(Base ID[10:0])
1

(SRR)
1

(XTD)
T0[17:0]

(Identifier Extension[17:0])
0

(RTR)

CAN FD 0 1 0
T0[28:18]

(Base ID[10:0])
0

(RRS)
0

(XTD)
1

(FDF)
0 16'b0 0

CAN FD
(extend
ed ID)

0 1 1
T0[28:18]

(Base ID[10:0])
1

(SRR)
1

(XTD)
T0[17:0]

(Identifier Extension[17:0])
0

(RRS)

CAN XL 1 X X
T0[28:18]
(Priority
ID[10:0])

T0[17]
(RRS)

0
(XTD)

1
(FDF)

1
(XLF)

16'b0 0

The selection of the TX message is done by looking at the queues in the following order, TX Priority

Queue slots from 0 to 31, then the TX FIFO Queues are scanned from 0 to 7. The process of TX

message selection will keep the two highest priority messages over the full scan.

IMPORTANT: When two or more TX messages have the same priority value, the first one will always be

kept as the one to be sent first.

IMPORTANT: At initial time, when several TX FIFO Queues are started at the same time, the first TX

messages may not be in the right order. Due to the scanning order (TX Priority Queue slots 0 to 31

and then TX FIFO Queue 0 to 7) and if the system memory latency is high, by the time the last TX

descriptor is uploaded to the L_MEM, some TX messages may have been already scanned for the

highest priority and sent to the PRT. This is normal behavior and will last only for the first TX

messages.

As soon as a new Header Descriptor is available in the L_MEM, it will be arbitrated automatically if the

TX-Scan process is not running. In case that a new TX Header Descriptor is stored in the L_MEM while

the TX-Scan is running, the TX-Scan goes up to the end and will restarted to take this new descriptor

into account.

Before starting the TX-Scan, the list of all potential candidates (valid) on the L_MEM is stored locally.

This process will ensure a proper definition of the best candidates after a complete scan at the time it

is done.

The duration of the TX-Scan mainly depends on the access time to the L_MEM and the number of TX

FIFO Queues and TX Priority Queue Slots. Here is the list of parameters that will drive the overall

time:

• The number of TX FIFO Queues being active at the same time

• The number of TX Priority Queue slots active at the same time

• The L_MEM read latency to fetch one single word

The processing time for one TX -Scan run can be defined as:

TX-Scan processing time (us) = Lr * (Nbfq + Nbpqs) * (1/CLK (MHz) where

Nbfq = Number of TX FIFO Queues active, Nbpqs = Number of TX Priority Queue slots active, Lr = read

latency from L_MEM defined in number of CLK clock cycles

MH_1447

MH_1451

MH_2609

MH_2610

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

179 | 306

In any cases, when a new TX message is scheduled for transmission and it has the highest priority, the

maximum delay to have this message selected by the TX-SCAN depends on, the maximum number of

TX FIFO Queue and TX priority Queue running concurrently at that time. Considering a maximum of 8

TX FIFO Queues and 32 TX Priority Queue slots running at the same time this leads to (considering the

previous formula):

Max TX SCAN duration (us) = Lr * 40 * (1/CLK (MHz).

As an example, CLK = 160MHz, Lr = 10 cycles leads to a Max delay TX message selection equal to 2.5

us. It is important to note that, in case of a TX message already being sent, the newer highest priority

message will have to wait for the current one to finish. Thus, the overall delay to have this message on

the CAN bus may change according to the CAN protocol, the payload data size and bit rate.

To ensure the continuity of a TX message, it is important to note that regarding TX FIFO Queues, the

current and the next TX Header Descriptor for a given FIFO are loaded in the L_MEM. This assumption

is valid only if the two TX descriptors are valid. Thus, if several TX messages in the same FIFO have the

highest priority over the others, they will be sent back-to-back. For the TX priority Queue, things are

different as one TX message is stored per slot. Only the TX message defined as active in a slot is

considered at any time.

Two internal buffers are used to hold the TX descriptors in order to send TX messages in a row. One is

holding the current TX descriptor to be sent right away to the PRT while the other stores the TX

descriptor for the next message. It is important to note that the TX descriptors selected are the result

of one TX-Scan. If any new events like, a message sent or a new message to be sent occurs, the two

candidates may not be right ones. In this case the TX descriptors already buffered may need to be

changed by some new ones. The change is performed step by step, to always have the highest priority

message of one TX-Scan run available in one of the two local buffers. The previous TX descriptor with

the highest priority is kept in one of the two local buffers while the new highest one is replacing the

other. This procedure is repeated, if required, to change the second highest priority message.

The event of any new TX descriptor being loaded and available in the L_MEM triggers a TX-SCAN run.

The TX descriptors describing TX messages can only considered by the TX-SCAN if they are available in

L_MEM, see TX_FQ_DESC_VALID and TX_PQ_DESC_VALID registers.

To prepare the next TX descriptor and to react properly according to the results of the data being

sent, there will be several actions to perform:

• The TX-SCAN computes the two next potential candidates, without considering the TX

descriptor set as current in one of the two local buffers (the one with the highest priority).

As soon as they are identified, the information related to the source of the two next highest

priority messages is stored locally.

• The first candidate is compared to the one already in local buffer and has the lowest priority

(the one with the highest priority is kept for the next transmission to come). If the first

candidate computed is already in one of the two local buffers, nothing needs to be done. If

MH_3103

MH_2652

MH_873

MH_874

MH_875

MH_876

MH_877

MH_878

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

180 | 306

this is not the case, it is uploaded to provide the next highest priority TX message and will

replace the one having the lowest priority in the local buffers. This is mandatory to ensure

that there is always a valid TX descriptor with high priority to provide to the PRT, at any

time. This is valid, even if the highest priority TX descriptor in local buffer may, at this time,

not be the one with the highest priority. As soon as the first candidate is loaded in the local

buffer, it may become the current one if it has the highest priority or the next one

otherwise. It may happen that, while loading the first candidate, the current one is used as

the next TX message. Nothing can prevent such scenario and either the one with the

highest priority is sent first or at the second place.

• The second candidate is compared with the one previously defined as the current one. If the

second candidate computed is already in one of the two local buffers, nothing needs to be

done. If this is not the case, it is uploaded to provide the second highest TX message. In

this particular case, the second candidate overwrites the other local buffer.

Here below is the flow chart of the TX-SCAN process.

MH_879

MH_880

MH_881

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

181 | 306

Set the TX descriptor fetched as the new
first or second potential candidate

Start

Is there a new valid
TX descriptor?

N

Y

Compare the TX descriptor to be fetched
with the one selected in local buffer

New TX descriptor
in L_MEM?

N

Y

Y

Y

N

Return

Is TX descriptor
already in local

buffer?

N

Y

Is TX descriptor having
higher priority?

Fetch T0 from L_MEM for the TX
descriptor selected

Get the first TX descriptor from the list of
valid descriptors

Compare T0 against the first and second
potential candidates

Upload full TX descriptor buffer from
L_MEM and replace the TX descriptor in
local buffer having the lowest priority

Get the next TX descriptor from the list
of valid descriptors

N

Is first potential
candidate in local

buffer?

N

Set the T0 of the lowest priority TX
descriptor from the two local buffers as

the first and second potential candidates
(initialization)

Is second potential
candidate in local

buffer?

N

Upload full TX descriptor buffer from
L_MEM and replace the TX descriptor in

local buffer used as the

Y

Figure: TX-Scan data flow

According to the status of the message sent, there will be two different actions:
MH_2748

MH_882

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

182 | 306

• The TX message is sent successfully: the next candidate is considered as the current

message. If no new TX descriptor is available in the L_MEM, the next candidate to be

fetched is already known, otherwise a new TX-SCAN run is launched.

• The TX message is not sent successfully: The first next candidate is compared with the

current one being not successful. If the current candidate has a higher priority, it will be

considered as the one to select, otherwise the other candidate is used instead. On top of

it, the re-transmission counter defined in the MH_CFG register will limit the number of

possible trials for the same message. If the counter exceeds the limit, the current

candidate will no longer be considered, even it has the highest priority. The TX message is

skipped, and the next candidate is taken instead. If the counter does not reach the

maximum value defined and a new message is taken instead, the counter is reset to 0.

Some TX-SCAN scenarios are described here below with the following assumptions:

• Three TX FIFO Queues and 3 TX Priority Queue slots are defined

• The TX messages are sent without any pause (no RX message received)

• For the sake of simplicity, only the ID in T0 is used as the main criteria to select the TX

message to be sent

• A TX message is defined per TX descriptor (only Header Descriptor are defined)

The first scenario describes the TX-SCAN based only on TX FIFO Queues running and considering every

message as sent successfully.

Descriptor number
used by TX FIFO

QUEUE

TX FIFO QUEUES

0 1 2

ID ID ID

- - - -

N - 18 -

N+1 - 5 -

N+2 - 40 -

N+3 - 30 10

N+4 1 1 38

N+5 0 110 80

N+6 4 24 20

N+7 7 6 6

N+8 11 4 8

N+9 20 29 15

N+10 100 50 39

- - - -

ID: TX Header Descriptor ID (one TX message per TX descriptor)

T
X
-

S
C

A
N

ru
n
 TX Header Descriptor in L_MEM

CAN BUS TX-SCAN results
TX FIFO QUEUES TX PRIORITY

MH_883

MH_884

MH_885

MH_886

MH_887

MH_888

MH_889

MH_890

MH_891

MH_892

MH_893

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

183 | 306

QUEUE SLOTS

0 1 2 0 1 2

CID NID CID NID CID NID CID CID CID IDIP
MSG

Result
NIDMNS NIDMS

0 - 1 18 - 10 - - - - - ok - 1

1 1 0 18 10 - - - 1 ok 1 0

2 0 4 18 10 - - - 0 ok 0 4

3 4 7 18 10 - - - 4 ok 4 7

4 7 11 18 10 - - - 7 ok 7 10

5 11 18 10 38 - - - 10 ok 10 11

6 11 20 18 38 - - - 11 ok 11 18

7 20 18 5 38 - - - 18 ok 18 5

8 20 5 40 38 - - - 5 ok 5 20

9 20 100 40 38 - - - 20 ok 20 38

10 100 40 38 80 - - - 38 ok 38 40

11 100 40 30 80 - - - 40 ok 40 30

12 100 30 1 80 30 ok 30 1

13 - - - - - - - - - - - -

CID: Current TX Header Descriptor ID to consider for TX-SCAN

NID: Next TX Header Descriptor ID to consider for TX-SCAN

NIDMS: Next TX Header Descriptor ID if Message Successful

NIDMNS: Next TX Header Descriptor ID if Message Not Successful

IDIP: TX Header Descriptor ID In Progress

The second scenario describes the TX-SCAN based on TX FIFO Queues and TX Priority Queue slots

running and considering every message as sent successfully.

Descriptor number

used by TX FIFO

QUEUE

TX FIFO QUEUES

0 1 2

ID ID ID

- - - -

N - 18 -

N+1 - 5 -

N+2 - 40 -

N+3 - 30 10

N+4 1 1 38

N+5 0 110 80

N+6 4 24 20

N+7 7 6 6

N+8 11 4 8

MH_894

MH_895

MH_896

MH_897

MH_898

MH_899

MH_900

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

184 | 306

N+9 20 29 15

N+10 100 50 39

- - - -

ID: TX Header Descriptor ID (one TX message per TX descriptor)

T
X
-S

C
A
N

 r
u
n
 TX Header Descriptor in L_MEM

CAN BUS TX-SCAN results TX FIFO QUEUE

PRIORITY QUEUE

SLOTS

0 1 2 0 1 2

CID NID CID NID CID NID CID CID CID IDIP
MSG

Result
NIDMNS NIDMS

0 - 1 18 - 10 - - - - - ok - 1

1 1 0 18 10 - - - 1 ok 1 0

2 0 4 18 10 - - - 0 ok 0 4

3 4 7 18 10 - 1 - 4 ok 1 1

4 7 18 10 - 1 - 1 ok 1 7

5 7 11 18 10 - - 12 7 ok 7 10

6 11 18 10 38 5 - 12 10 ok 5 5

7 11 18 38 5 - 12 5 ok 5 11

8 11 20 18 38 - - 12 11 ok 11 12

9 20 18 38 - - 12 12 ok 12 18

10 20 18 5 38 - - - 18 ok 18 5

11 20 5 40 38 - - - 5 ok 5 20

12 20 100 40 38 20 ok 20 38

13 - - - - - - - - - - - - -

CID: Current TX Header Descriptor ID to consider for TX-SCAN

NID: Next TX Header Descriptor ID to consider for TX-SCAN

NIDMS: Next TX Header Descriptor ID if Message Successful

NIDMNS: Next TX Header Descriptor ID if Message Not Successful

IDIP: TX Header Descriptor ID In Progress

The third scenario describes the TX-SCAN based on TX FIFO Queues and TX Priority Queue slots

running and considering successful and not successful messages with re-transmission counter set to

1.

Descriptor number

used by TX FIFO

QUEUE

TX FIFO QUEUES

0 1 2

ID ID ID

- - - -

MH_901

MH_902

MH_903

MH_904

MH_905

MH_906

MH_907

MH_908

MH_909

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

185 | 306

N - 18 -

N+1 - 5 -

N+2 - 40 -

N+3 - 30 10

N+4 1 1 38

N+5 0 110 80

N+6 4 24 20

N+7 7 6 6

N+8 11 4 8

N+9 20 29 15

N+10 100 50 39

- - - -

ID: TX Header Descriptor ID (one TX message per TX descriptor)

T
X

-S
C

A
N

 r
u

n
 TX Header Descriptor in L_MEM

CAN BUS TX-SCAN results TX FIFO QUEUE

PRIORITY QUEUE
SLOTS

0 1 2 0 1 2

CID NID CID NID CID NID CID CID CID IDIP
MSG
Result

NIDMNS NIDMS

0 - 1 18 - 10 - - - - - ok - 1

1 1 0 18 10 - - - 1 ok 1 0

2 0 4 18 10 - - - 0 ok 0 4

3 4 7 18 10 - 1 - 4 nok 1 1

4 4 7 1 - 1 ok 1 4

5 4 7 18 10 - - - 4 nok 4 7

6 4 7 18 10 - - 12 4 ok 7 7

7 7 11 18 10 5 - 12 7 ok 5 5

8 11 18 10 5 - 12 5 ok 5 10

9 11 18 10 38 - - 12 10 ok 10 11

10 11 20 18 38 - - 12 11 nok 11 12

11 11 20 18 38 - - 12 11 nok 12 12

12 20 18 38 - - 12 12 ok 12 18

13 - - - - - - - - - - - - -

CID: Current TX Header Descriptor ID to consider for TX-SCAN

NID: Next TX Header Descriptor ID to consider for TX-SCAN

NIDMS: Next TX Header Descriptor ID if Message Successful

NIDMNS: Next TX Header Descriptor ID if Message Not Successful

IDIP: TX Header Descriptor ID In Progress

Some debug registers are used to monitor the activity of the TX-Scan:

• The TX_SCAN_FC register provides the 2 best candidates selected from the previous TX-Scan run

as well as the 2 best candidates for the current run

MH_910

MH_911

MH_912

MH_913

MH_914

MH_915

MH_916

MH_2161

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

186 | 306

• The TX_SCAN_BC register gives all the relevant information (The TX FIFO Queue number and TX

descriptor offset in that Queue or the TX Priority Queue slot number) regarding the two best

candidates uploaded in the local buffer and ready to be sent to the PRT

• The TX_FQ_DESC_VALID register identifies which TX descriptor is valid, uploaded in the L_MEM

and belonging to the list of potential candidates for the TX-Scan. The information displayed in

that register covers for a given TX FIFO Queue, the current and the next TX descriptors of a

queue that may be loaded in the L_MEM and valid

• The TX_PQ_DESC_VALID register provides the information of the slots of the TX Priority Queue

loaded in the L_MEM and valid (ready for the TX-Scan)

1.4.5.22 TX Filter

To ensure only declared TX messages can go through, the MH provides to the SW a way to define TX

acceptance filters. Only the TX messages being filtered are considered for the arbitration process.

There is the option to enable or disable this TX filtering process (see TX_FILTER_CTRL0.EN bit

register) and so to leave all TX messages to go through or not. Several TX filter elements are defined

and processed to determine if the TX message is accepted or rejected. The TX_FILTER_CTRL0 control

register defines how the TX filter elements are used, either standalone or combined.

A TX filter element uses reference values to compare with the TX message header data. The selection

of the bit field to do the comparison can be configured for every TX filter element. Up to 16 TX filter

elements can be defined and apply to every TX message when fetched from the L_MEM. There is no

way to define those filters only for some specific queues. They apply to all TX messages whatever the

TX FIFO Queues and TX Priority Queue slots.

When a TX filter error occurs, the faulty TX message is acknowledged with the status report "message

rejected by TX filter". Thus, the SW is able to identify which one has been rejected, while scanning the

TX descriptors from the TX FIFO Queues or TX Priority Queue slots. In order to determine the one

being faulty and to avoid waiting for the TX descriptor, the TX_FILTER_ERR_INFO register provides the

relevant information. The TX_FILTER_ERR_INFO.FQ when set to 1 defines a faulty TX message from a

TX FIFO Queue otherwise from the TX Priority Queue. The FIFO Queue number is defined with the

TX_FILTER_ERR_INFO.FQNS_PQS[3:0] bit field and the slot number with the

TX_FILTER_ERR_INFO.FQNS_PQS[4:0] bit field.

1.4.5.22.1 Global configuration

To protect the setting of those TX filter elements, registers assigned to the configuration are

protected, they can only be accessed in write Privileged mode. Only the required application can

modify the TX filter setting.

A global TX filter configuration register can be used to define, if the TX messages are accepted or

rejected on match using the TX_FILTER_CTRL0.MODE bit register.

MH_917

MH_918

MH_919

MH_2936

MH_3092

MH_920

MH_1819

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

187 | 306

To notify the system that a TX message is rejected, a TX_FILTER_IRQ interrupt is generated. It is

possible to enable and disable the TX filter interrupt using the TX_FILTER_CTRL0.IRQ_EN bit register.

On top of it, the faulty TX descriptor is acknowledged immediately with the status rejected by TX

filter.

The TX filter elements can be enabled or disabled independently from each other thanks to the

TX_FILTER_CTRL1.VALID[15:0] bit registers.

In order to define the type of data to be compared with, either the VCID or SDT, the

TX_FILTER_CTRL1.FIELD[15:0] is used. This register bit field is relevant for the CAN XL protocol only.

The definition of those TX filter elements is done through the setting of registers. Compared to the RX

filter, the TX filter does not require to have access to the L_MEM, settings are done only in registers,

see TX_FILTER_CTRL0, TX_FILTER_CTRL1, TX_FILTER_REFVAL{n} (n € {0, 1, 2, 3}) registers. It is

assumed that the TX filter elements once defined are statics and won’t change over time while the MH

is running.

Refer to the TX filter registers for a more detailed description of the TX filters.

As the MH can support several CAN protocols, different options are possible on the TX filter, see the

next sections for more details.

1.4.5.22.2 Classical CAN

All Classical CAN TX messages are either accepted or rejected, see TX_FILTER_CTRL0.CC_CAN bit

register. There is no other option for such Classical CAN protocol. The TX filter elements are only used

for the CAN XL protocol.

1.4.5.22.3 CAN FD

All CAN FD messages are either accepted or rejected, see TX_FILTER_CTRL0.CAN_FD bit register.

There is no other option for the CAN FD protocol. The TX filter elements are only used for the CAN XL

protocol.

1.4.5.22.4 CAN XL

Several options are possible to define the TX filter elements.

Two global modes are defined for the overall TX filter elements, either Allow or Reject on match, see

TX_FILTER_CTRL0.MODE bit field register. When the Mode is configured to "Allow" (White List

Approach), which is set by default, a TX message is only transmitted, if there is a match on one of the

TX filter elements. When the Mode is configured to "Reject" (Black List Approach) a TX message is

only transmitted if there is no match at all.

MH_922

MH_923

MH_1818

MH_924

MH_921

MH_925

MH_926

MH_927

MH_928

MH_929

MH_930

MH_931

MH_932

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

188 | 306

Every TX filter element is provided with a reference value to be compared with and which bit field in

the message header to be used, either VCID or SDT.

There are three different options on how to define a TX filter element with the previous definition:

Option 1:

In normal mode, the reference value defined in TX_FILTER_REFVAL{n}.REF_VAL3,

TX_FILTER_REFVAL{n}.REF_VAL2, TX_FILTER_REFVAL{n}.REF_VAL1 and

TX_FILTER_REFVAL{n}.REF_VAL0 (n € {0, 1, 2, 3}) registers, is compared with either SDT or VCID. If

e.g. TX_FILTER_REFVAL{n}.REF_VAL0 is defined to be compared to VCID and

TX_FILTER_REFVAL{n}.REF_VAL1 to be compared to SDT than a CAN message will get a match if one of

the two values matches.

Any of the 16 TX filter elements can be used to compare the VCID or the SDT value, refer to the

control bit register TX_FILTER_CTRL1.FIELD[n] (n € {0, 1, 2, 3, …, 15}) (when the bit n is set to 1, the

SDT bit field is selected for the TX filter element otherwise VCID).

The Tx filter n is defined as valid or not valid using the TX_FILTER_CTRL1.VALID[n] (n € {0, 1, 2, 3, …,

15}) bit register. If the TX filter 1 is not considered, just set the TX_FILTER_CTRL1.VALID[1] to 0. An

example of the option 1 is given in the table below.

For such configuration, the TX_FILTER_CTRL0.MASK[n] (n € {0, 1, 2, …, 7}) bit register must be set to

0 for the given TX filter element pair (n and n+1 assuming n is even)

To allow single compare value, meaning one reference value for one match, the

TX_FILTER_CTRL0.COMB[n] must set to 0 for TX filter element n and n+1 (n being even). In this mode,

there will be always TX filter element n and n+1 available.

Option 2:

Based on the normal mode and to increase the possible filtering options, two TX filter elements can

be combined to allow VCID and SDT to be checked as only one filter. However, both values must be

identical. As only a pair of TX filter elements reference values can be combined,

TX_FILTER_REFVAL{n}.REF_VAL0 and TX_FILTER_REFVAL{n}.REF_VAL1 or

TX_FILTER_REFVAL{n}.REF_VAL2 and TX_FILTER_REFVAL{n}.REF_VAL3 (n € {0, 1, 2, 3}) can be used.

The selection of the bit field value to be compared with is defined by the TX_FILTER_CTRL1.FIELD[n]

(n € {0, 1, 2, 3, …, 15}) bit register. The setting of this register is identical to the option 1.

Only two adjacent TX filter elements can be configured as combined, using the

TX_FILTER_CTRL0.COMB[n] (n € {0, 1, 2, …, 7}) bit register. When set to 1, TX filter n and n+1 (n

being even) are combined. As an example, for the REF_VAL0/REF_VAL1 in the TX_FILTER_REFVAL0

register, the TX_FILTER_CTRL0.COMB[0] bit must be set to 1.

For such configuration, the TX_FILTER_CTRL0.MASK[n] (n € {0, 1, 2, …, 7}) bit register must be set to

0 for the given TX filter element pair (n and n+1 assuming n is even).

The TX filter element n and n+1 which are combined (n being even) need to be set as valid (set to 1)

using the TX_FILTER_CTRL1.VALID[n] and TX_FILTER_CTRL1.VALID[n+1] (n € {0, 1, 2, 3, …, 15}) bit

register. This means that combined TX filter elements require two bits to be set in the

TX_FILTER_CTRL1 register.

Option 3:

MH_933

MH_934

MH_944

MH_945

MH_946

MH_947

MH_949

MH_950

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

189 | 306

In order to compare a range of values, a reference value and a mask are required. To provide such

option, two TX filter elements TX filter n and n+ 1 (n is even) can be paired in a way that one is the

value to be compared with while the other is the mask. As only a pair of TX filter elements reference

values can be combined, TX_FILTER_REFVAL{n}.REF_VAL0 and TX_FILTER_REFVAL{n}.REF_VAL1 or

TX_FILTER_REFVAL{n}.REF_VAL2 and TX_FILTER_REFVAL{n}.REF_VAL3 (n € {0, 1, 2, 3}) can be used.

In order to set one of the two reference value as a mask, the appropriate bit in the

TX_FILTER_CTRL0.MASK[n] (n € {0, 1, 2, …, 7}) bit register must be set to 1. As an example, the

TX_FILTER_CTRL0.MASK[0] set to 1 is referring to the pair TX_FILTER_REFVAL0.REF_VAL0 and

TX_FILTER_REFVAL0.REF_VAL1. In such configuration, the second reference value is the mask, hence

the REF_VAL1 when considering the REF_VAL0/REF_VAL1 pair.

The bit field to be compared with is defined by the TX_FILTER_CTRL0.FIELD bit field register. For the

above example the TX_FILTER_CTRL0.FIELD[0] must be set either to 1 for SDT or 0 for VCID. When

TX_FILTER_CTRL0.MASK[0]=1 then TX_FILTER_CTRL0.FIELD[1] is ignored by the MH, REF_VAL1 is

interpreted as a mask only.

Only two adjacent TX filter elements can be configured as combined, using the

TX_FILTER_CTRL0.COMB[n] (n € {0, 1, 2, …, 7}) bit register. When set to 1, TX filter n and n+1 (n

being even) are combined. As an example, for the TX_FILTER_REFVAL0.REF_VAL0 and

TX_FILTER_REFVAL0.REF_VAL1 bit field, the TX_FILTER_CTRL0.COMB[0] bit must be set to 1.

It is essential to enable this pair of TX filter element by setting the appropriate bits in the

TX_FILTER_CTRL1 register. As an example, the TX_FILTER_CTRL1.VALID[1:0] set to 2’b11 will enable

the TX_FILTER_REFVAL0.REF_VAL0 (used as reference value) and TX_FILTER_REFVAL0.REF_VAL1 (used

as a mask).

The following example shows 4 reference values defined in the TX_FILTER_REFVAL0 register, others

behave the same.

Option 1 (single): A TX filter element uses only one reference value and one bit field (VCID or SDT)

Option 2 (Combined with matches): REF_VAL0 and REF_VAL1 are combined to provide a TX filter

element that is able to compare VCID and SDT in the same filter. The same holds for REF_VAL2 and

REF_VAL3.

Option 3 (Combined with mask and value): same as Option 2 with the difference that, REF_VAL0 is

still the reference value to compare with (either VCID or SDT) but the REF_VAL1 is the mask to apply.

In the table below, the 3 options are depicted.

Table: TX filter Element options

Reference

value

Option 1

(single)

Option 2

(Combined with matches)

Option 3

(Combined with mask and value)

REF_VAL0
REF_VAL0 =

(VCID or SDT)

REF_VAL0 = VCID or SDT

AND

REF_VAL1 = VCID or SDT

REF_VAL0 (value) = REF_VAL1 (mask)

AND (VCID or SDT)

REF_VAL1
REF_VAL1 =

(VCID or SDT)

REF_VAL2 REF_VAL2 = REF_VAL2 = VCID or SDT REF_VAL2 (value) = REF_VAL3 (mask)

MH_938

MH_939

MH_940

MH_941

MH_2650

MH_942

MH_943

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

190 | 306

Reference

value

Option 1

(single)

Option 2

(Combined with matches)

Option 3

(Combined with mask and value)

(VCID or SDT) AND

REF_VAL3 = VCID or SDT

AND (VCID or SDT)

REF_VAL3
REF_VAL3 =

(VCID or SDT)

1.4.5.23 RX Filter

The RX filtering provides a way to reject or accept RX messages to the SW as well as to write those

messages to a defined RX FIFO Queue.

Up to 255 RX filters can be defined. The RX filter is defined using a RX filter element (word of 32bit)

associated with up to 2 pairs of reference(32bit)/mask(32bit) values. Those RX filter elements are

continuous in the L_MEM and will be parsed one after the other. Regarding the reference/mask pairs

they are defined after the RX filter element list in the L_MEM, up to 256 pairs can be declared.

To be flexible, a RX filter is made of up to 2 comparisons, each one using a reference value (32bit) and

mask value (32bit) to apply on one of the incoming header message data words (R0, R1 or R3) from

the PRT. A reference/mask pair can apply to any of the RX filter elements.

It is a SW task to define and write the RX filter elements and reference/mask pairs in the L_MEM.

There is no direct access to it through the MH. The SW would need to access the L_MEM directly to

program the relevant RX filter elements and reference/mask pairs.

The process of RX filtering is started as soon as the first 32bit word from the PRT is received, meaning

R0. If the RX filter is fetching a filter element which requires R1, the process is on hold waiting for the

32bit word to be available. The same applies with R2 if only R0 and R1 are available.

The minimum time dedicated to the RX filtering is defined by the reception of an RX message when it

is sent back-to-back. The timing window in this case is defined by the reception of two first 32bit word

from the PRT (R0/R1) for the current RX message to the next two 32bit words (R0/R1) of the next

message.

1.4.5.23.1 Global configuration

The register RX_FILTER_CTRL is used to set the general configuration for all RX Filters, a write access

in Privileged mode is required. Once the MH is started (MH_CTRL.START = 1), the register is write-

protected. Here below is the list of RX filter configuration setting:

• The number of RX filter elements is defined in the RX_FILTER_CTRL.NB_FE[7:0] bit field

register

MH_951

MH_952

MH_954

MH_955

MH_956

MH_2971

MH_953

MH_3091

MH_957

MH_958

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

191 | 306

• non-matching CAN frames can be accepted or rejected by configuring the

RX_FILTER_CTRL.ANMF bit register to 1. If non-matching frames are accepted, they are

stored in the default RX FIFO Queue defined by the RX_FILTER_CTRL.ANMF_FQ[2:0] bit

field register

• If the RX filtering is taking too much time, the data stored in the RX DMA FIFO may lead to an

overflow. There is the option to allow the reception of such frames to the default RX FIFO

Queue (defined by the RX_FILTER_CTRL.ANMF_FQ[2:0] bit field register). This feature is

only enabled when setting the RX_FILTER_CTRL.ANFF bit field register to 1. The

RX_FILTER_CTRL.THRESHOLD[4:0] defines the level in the RX DMA FIFO that has to be

reached before sending the non-filtered frames are sent to the default RX FIFO Queue

• The default RX FIFO Queue number, to write RX message data when non-matching frames OR

non-filtered frames are accepted, is defined in the RX_FILTER_CTRL.ANMF_FQ[2:0] bit field

register. This default RX FIFO Queue value is considered if either the

RX_FILTER_CTRL.ANMF bit or the RX_FILTER_CTRL.ANFF bit is set to 1. It is essential to

enable and start this default RX FIFO Queue prior starting the PRT

1.4.5.23.2 Reference and Mask Pair

Two comparisons in the RX Filter Element can be defined. Each comparison requires a reference value

(REFm) and a mask (MSKm) (m € {0, 1, 2, …, 255}). The reference and mask value are 32bit data.

The 32bit reference value is compared with the first (R0), the second (R1) or the third (R2) word

(32bit) of the RX message header (coming from the PRT) after applying the 32bit mask value.

The formula to compute a match is defined as (Ri being R0 or R1 or R2; & = bitwise AND) :

MATCHm = 1 When (Ri & MSKm) = REFm Else 0

For one single comparison (REFm,MASKm) in a RX Filter Element:

MATCH = MATCHm

For a RX filter element with two comparisons (REFm,MSKm) and (REFn,MSKn) we have:

MATCH = MATCHm AND MATCHn

Here are the setting of the (REFm,MSKm) and/or (REFn,MSKn), to mask and compare a bit value:

To mask the bit Ri[j]:

• Set MSK(m/n)[j] = 0

• Set REFm(m/n)[j] = 0

To compare the bit Ri[j] to a defined bit value:

• Set MSK(m/n)[j] = 1

• Set REF(m/n)[j] = 1 or 0

Here are two examples of RX filters:

MH_959

MH_2232

MH_960

MH_3088

MH_3090

MH_3213

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

192 | 306

To accept only CAN FD and CAN CC frames (in other word to reject only CAN XL frames), only the XLF

bit in the first header matters (R0[30]). This bit must always be set to 0 to indicate CAN FD and CAN

CC frames. This leads to the following mask and reference value:

MASKm[30] = 1, other bits being set to 0

REFm[30] = 0, other bits being set to 0

To reject CAN FD and CAN CC frames (in other word to accept only CAN XL frames), only the XLF bit

in the first header matters (R0[30]). This bit must always be set to 1 to indicate CAN XL frames. This

leads to the following mask and reference value:

MASKm[30] = 1, other bits being set to 0

REFm[30] = 1, other bits being set to 0

The reference value and the mask are defined as a pair of two consecutive words of 32bit in L_MEM,

starting with the REFm. Up to 256 pairs can be defined for the overall RX filter elements. All the pairs

of reference value and mask are appended after the RX filter elements section in L_MEM, see MH

Software Interface chapter. Any of the 256 reference/mask pairs can be selected for a given RX filter

element.

The RX filter element will use an index to identify the position of the pairs to be used. The first pair is

having the index 0, the second the index 1 and so on. The RX Filter Element is then referring to this

index in the bit field CREFI0 and CREFI1 (see RX Filter Element Definition chapter), to identify the

right pair to use.

1.4.5.23.3 RX Filter Element Definition

For every filter element it is possible to:

• Define which RX FIFO Queue to use, if an RX message is accepted or rejected on match

• Generate an interrupt when a filter matches, triggering the signal RX_FILTER_IRQ to the

system

• Define, if the expected RX message is defined in the blacklist (BLK bit field)

• Define up to 2 comparisons with the option to:

• Select the word index in the header message to look at (limited to R0, R1 and R2),

see WI0 or WI1. It is important to note that R2 is a header data for the CAN XL while

a payload data in case of Classical CAN and CAN FD. In case a remote frame is

detected, any filter looking at R2 will be discarded.

• Define the reference value and mask index to perform the comparison, see CREFI0 or

CREFI1 bit field

• Reject or accept on match, see AR0 and AR1

• Perform two comparisons for a match. When WI0 and WI1 are both different from 0,

both comparisons are performed to know if there is a match. In such configuration,

MH_3212

MH_3089

MH_2789

MH_961

MH_962

MH_963

MH_964

MH_965

MH_966

MH_967

MH_968

MH_969

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

193 | 306

the AR0 and AR1 must be identical. In case they are not, only the comparison 0 is

performed to check for a match.

RX filter element is described in table below:

Table: RX filter element description

Filter

Element
Section Bit Field

Name Description

FEn

Control

FEn[31:28]

FIFO[3:0]

RX FIFO Queue number to store the receive

CAN data

FEn[27] IRQ Interrupt: When set to 1 an interrupt is

triggered to the system when a match is

detected

FEn[26] BLK BlackList: When set to 1 the BLK bit defined in

the RX message header is set to 1

FEn[25:24] Reserved

Comparison 1

(only considered

with comparison

0)

FEn[23] Reserved

FEn[22] AR1 See AR0 bit field description. Must always be

equal to AR0.

FEn[21:20] WI1[1:0] See WI0 bit field description

FEn[19:12] CREFI1[7:0] See CREFI0 bit field description

Comparison 0

FEn[11] Reserved

FEn[10] AR0 Accept or reject on match: when set to 1 the

RX message is rejected on match otherwise

accepted on match

FEn[9:8] WI0[1:0] Word Index: provide the index of the RX

message header word to compare, 1 for R0, 2

for R1 and 3 for R2 (CAN XL) / RD0 (Classic

CAN and CAN FD).

3 is not considered as a valid index for:
- Classical CAN Remote frame
- Classical CAN frame with no payload

data
- CAN FD frame without payload data

The comparison is then cancelled (next filter

element is taken instead).

When set to 0, no comparison is performed

FEn[7:0]

CREFI0[7:0]

Comparison Reference Index: provide the index

of the reference pair (value and mask) to be

used for comparison. Up to 256 reference pairs

can be defined. Only the reference pair number

need to be set in this bit field.

MH_975

MH_976

MH_977

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

194 | 306

The RX filter element can be used in two different modes:

• One comparison defined: Only the Comparison 0 is considered (WI0 > 0 and WI1 = 0)

• Two comparisons defined: Comparison 0 and comparison 1 are used (WI0 > 0 and WI1 > 0)

It is essential to understand that if the Comparison 1 is defined, this RX Filter element will not be

considered if the Comparison 0 is not defined. In such case, the filter element is skipped.

Each time an RX message is received, the RX filtering is triggered and will start the following

sequence:

• Fetch the first filter element from L_MEM. The start address of this first filter element is

defined in RX_FILTER_MEM_ADD.BASE_ADDR[15:0] register

• If the conditions listed below are met, the RX filter element will be discarded, and the next

filter element be fetched (if there is one available). In all other cases, go to next step:

• WI0 = 0

• WI0 = 3 and the frame is either a Classical CAN/CAN FD without payload or a Classical

CAN remote frame.

• WI1 = 3 and the frame is either a Classical CAN/CAN FD without payload or a Classical

CAN remote frame.

• WI0 > 0 and WI1 > 0 and AR0/AR1 not equal

• For the comparison 0, using the index CREFI0, the two words for the reference value and

mask are fetched from L_MEM.

• The comparison 0 is done between the word defined by the index WI0 and the reference

value/mask fetched earlier. According to the WI1 bit, several actions are taken:

• WI1 set to 0 (Comparison 0 only): if there is a match, the RX filter will look at the AR0

bit to identify what to do with the RX message. It would then be accepted or

rejected, and the RX filter stops. If there is no match, the RX filter keeps going with

the next filter element, if there is one available, otherwise it stops.

• WI1 > 0 (Comparison 0 and Comparison 1 expected): if there is a match on the

comparison 0, the RX filter will wait for the result of the comparison 1 to decide

what to do with the RX message. If there is no match on comparison 0, the RX filter

keeps going with the next filter element, if there is one available, otherwise it stops.

For the comparison 1, using the CREFI1, the two words for the reference value and

mask are fetched from L_MEM.

• The comparison 1 is done between the word defined by the index WI1 and the reference

value/mask fetched earlier. If there is a match, the RX filter will look at the AR0 bit to

identify what to do with the RX message. It would then be accepted or rejected, and the RX

filter stops. If there is no match, the RX filter keeps going with the next filter element, if

there is one available, otherwise it stops.

MH_978

MH_979

MH_980

MH_2860

MH_981

MH_982

MH_983

MH_984

MH_985

MH_986

MH_987

MH_988

MH_989

MH_990

MH_991

MH_992

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

195 | 306

1.4.5.23.4 RX Header Descriptor Updates

When an RX message is accepted, the index of the RX filter element which has accepted the message

on match is logged inside the RX Header Descriptor. In case the RX message is rejected, no

information is provided to the SW.

The filtering process writes some filtering information to three header data bit fields (see RX Message

header definition chapter):

• The BLK bit in the header data of the RX message can be set by an RX filter element to

indicate to the SW unexpected messages. When the SW parses the RX message Header

Descriptor, it can easily identify a blacklisted message. Having the AR0 and AR0/AR1 set to

1 (RX message rejected on match) with the BLK bit has no meaning.

• The FIDX[7:0] bit field is used to provide the information of the filter element index which

has been triggered for that message

• The FAB bit field is set to 1 when the RX filtering process did not complete before the RX

DMA FIFO level gets above its programmed threshold. This bit is set, when such issue

occurs, only if the RX_FILTER_CTRL.ANFF bit register is set to 1 and the

RX_FILTER_CTRL.THRESHOLD[4:0] bit field is greater than 0 (threshold mechanism active)

• The FM bit field when set to 1, notifies the SW that there was a match on the RX filtering.

When the FAB and FM bit fields are set to 0, the RX filtering process ends with no match

1.4.5.23.5 MH Behavior According to RX Filter Setting

The RX filter elements are sequentially read from the L_MEM. This process continues up to the point,

where the RX filter result is known, and the message can either be accepted or rejected.

In case the RX filter selects an RX FIFO Queue that is not enabled, the incoming frame is considered

as a non-matching frame and is discarded, the RX_ABORT_IRQ is set to the system.

In a normal situation, when the RX filter result arrives in time, the RX message data is processed

according to RX filter result:

• In case of a match, it is sent to the appropriate RX FIFO Queue

• In case of a reject, the RX message is discarded

Non-matching frames can be accepted or rejected according to the RX_FILTER_CTRL.ANMF bit register

configuration. If RX_FILTER_CTRL.ANMF bit is configured to accept non-matching frames, the RX

message is sent to a default RX FIFO Queue, see RX_FILTER_CTRL.ANMF_FQ[2:0] bit field register.

A threshold can be defined on the RX DMA FIFO to manage not filtered frames, at a defined fill level of

the RX DMA FIFO. The RX_FILTER_CTRL.ANFF must be set to 1 to activate the function and the

RX_FILTER_CTRL.THRESHOLD[4:0] bit field defining the threshold value must be greater than 0. Once

MH_2790

MH_994

MH_970

MH_971

MH_972

MH_973

MH_974

MH_2788

MH_993

MH_1449

MH_2974

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

196 | 306

activated, those frames are sent to a default RX FIFO Queue, see RX_FILTER_CTRL.ANMF_FQ[2:0] bit

field register.

Here below is the summary of the RX filter behavior when considering RX_FILTER_CTRL.NB_FE[7:0],

RX_FILTER_CTRL.ANMF and RX_FILTER_CTRL.ANFF bit fields:

ANMF
NBFE[7:0

]

ANFF RX Filter status

0 0 X All RX frames are rejected

1 0 X
All RX messages are accepted and are going to the default RX FIFO Queue

defined by RX_FILTER_CTRL.ANMF_FQ[2:0]

0 > 0 0

Frames with match are going to RX FIFO Queues

Frames with no match are rejected

No threshold monitoring is performed during RX filtering

0 > 0 1

Frames with match are going to RX FIFO Queues

Frames with no match are rejected

Frames reaching the RX DMA FIFO level set in the

RX_FILTER_CTRL.THRESHOLD[4:0] register and not filtered, are going to

the default RX FIFO Queue defined in RX_FILTER_CTRL.ANMF_FQ[2:0]

register

1 > 0 0

Frames with match are going to RX FIFO Queues

Frames with no match are going to the default RX FIFO Queue defined by

RX_FILTER_CTRL.ANMF_FQ[2:0]

No threshold monitoring is performed during RX filtering

1 > 0 1

Frames with match are going to RX FIFO Queues

Frames with no match are going to the default RX FIFO Queue defined by

RX_FILTER_CTRL.ANMF_FQ[2:0]

Frames reaching the RX DMA FIFO level set in the

RX_FILTER_CTRL.THRESHOLD[4:0] register and not filtered, are going to

the default RX FIFO Queue defined in RX_FILTER_CTRL.ANMF_FQ[2:0]

register

The MH will manage the RX message differently if a default RX FIFO Queue is defined or not, with or

without a threshold defined. The configurations being able to use the two last options are described

below:

1) Threshold mechanism is not active (RX_FILTER_CTRL.ANFF bit set to 0 and

RX_FILTER_CTRL.NBFE[7:0] > 0).

Two scenarios can occur:

• The RX filtering result is not known before receiving the first word of the next RX message and

the amount of the CAN frame data is lower than the RX DMA FIFO. The next RX message is

discarded with the RX_ABORT_IRQ interrupt triggered to the system.

MH_2948

MH_2947

MH_2972

MH_998

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

197 | 306

• In case the amount of data received, while waiting the RX filtering result, does exceed the

maximum RX DMA FIFO size, the RX message is discarded with the RX_ABORT_IRQ interrupt.

The DP_DO_ERR interrupt is triggered to notify a RX DMA FIFO overflow.

2) Threshold mechanism is active (RX_FILTER_CTRL.ANNF bit set to 1 and RX_FILTER_CTRL.NBFE[7:0]

> 0 and RX_FILTER_CTRL.THRESHOLD[4:0] value is greater than 0). This backup solution to avoid

losing the RX message is possible due to the monitoring of the RX DMA FIFO level and a threshold

configured in the RX_FILTER_CTRL.THRESHOLD[4:0] bit field register (see next section for more

details).

Two scenarios can occur:

• The RX filtering result takes a very long time, and the frame size is large. Once the threshold is

reached, the RX descriptor from the default RX FIFO Queue is fetched from the S_MEM. Then,

the RX buffer address pointer defined in the RX descriptor is used to write the first burst of

data to the default RX FIFO Queue.

• The RX filtering result takes a very long time, and the frame size does not reach the threshold

value. The RX filtering keeps going whatever the new incoming frames. In case a new RX

message is received, it is discarded with the RX_ABORT_IRQ interrupt. The RX_FILTER_ERR is

also triggered to the system to identify that the RX filtering has gone over the second RX frame.

This is an indicator which could explain why the new RX frame is rejected.

Here below is a table to summarize the different scenarios:

Frame

Length

Filter result

when

Threshold

reached

Filter result

when next RX

message

arrives

Action of MH

Comments

Short

Not possible Available Store frame in RX FIFO

Queue defined by RX

filter result

Normal behavior

Short

Not possible Not available Discard next RX

message

The overall processing time is too

long due to a high number of filters

and/or a high latency on the L_MEM,

see calculation in Excel-Sheet [6].

Long

Available and

ANFF = 0 or 1

Not considered Store frame in RX FIFO

Queue defined by RX

filter result

Normal behavior

Long

Not available

and ANFF = 0

Not considered Continues RX filtering to

get filter result

Within this case, the message is

written in time to the right RX FIFO

Queue or discarded due to data

overflow on the RX DMA FIFO

Long

Not available

and ANFF = 1

Not considered Store frame in default

RX FIFO Queue

The threshold must be set to a value

that there is enough time to fetch

the RX descriptor and to write burst

data to S_MEM, see calculation in

MH_997

MH_2791

MH_2792

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

198 | 306

Frame

Length

Filter result

when

Threshold

reached

Filter result

when next RX

message

arrives

Action of MH

Comments

Excel-Sheet [6].

1.4.5.23.6 Threshold computation

The MH uses the RX_FILTER_CTRL.THRESHOLD[4:0] only when the RX_FILTER_CTRL.ANFF bit is set to

1 and the threshold value is greater than 0. The threshold value to be configured by the user depends

on the S_MEM latency, the CAN protocols supported and the CAN XL data bit rate. The RX DMA FIFO

has a size of 32 words (128 byte).

Case 1: Only Classical CAN and/or CAN FD messages are received: The RX DMA FIFO is capable of

storing a complete Classical CAN or CAN FD message. The feature RX_FILTER_CTRL.ANFF should not

be used.

Note: When RX_FILTER_CTRL.ANFF bit is set to 1 and RX_FILTER_CTRL.THRESHOLD[4:0] bit field is

set to 19 or larger, then the threshold will never be reached. This implicitly disables the threshold.

Case 2: CAN XL messages are received: CAN XL messages can be much longer than the RX DMA FIFO

size. When the fill level of the RX DMA FIFO reaches the threshold, the MH will fetch the RX descriptor

from the default RX FIFO Queue and will write the first burst of data stored in the RX DMA FIFO. For

the case, that no RX filter result is available at the point in time the threshold is reached, this

mechanism prevents a data overflow that would occur on the RX DMA FIFO and allows the reception

of the message. It is then, up to the SW to filter this frame.

The threshold divides the time budget provided by the RX DMA FIFO into two parts: (1) time to do the

RX Filtering, (2) Time to fetch the RX Descriptor from S_MEM and to write the first burst of data to

S_MEM. The user should configure the threshold as large as possible, to give the RX Filtering enough

time, but as low as necessary to be able to receive the message, in case RX filtering is not finished yet.

The Excel-Sheet [6] calculates the optimal threshold value, which depends on the S_MEM latency and

the CAN XL data bit rate.

1.4.5.23.7 RX Filter Processing Time

The number of accesses to evaluate an RX filter element is defined as follow:

 Classical CAN and CAN FD:

 One single word access (definition of the filter element) and 2 words for the mask and value to

compare with

 CAN XL:

MH_2919

MH_2920

MH_2787

MH_2602

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

199 | 306

 same as Classical CAN / CAN FD or one single word and 2 reads of 2 words for the 2 mask and

value to compare with

The RX filter element access time depends on the read latency Lr (defined in number of CLK clock

cycles):

 Classical CAN and CAN FD:

 RX Filter element processing time (us) = ((Lr+2) + (Lr+1+2)) * (1/CLK (MHz))

 CAN XL:

 RX Filter element processing time (us) = ((Lr+2) + (Lr+1+2)) * (1/CLK (MHz)) with one

comparison

 RX Filter element processing time (us) = ((Lr+2) + 2*(Lr+1+2)) * (1/CLK (MHz)) with two

comparisons

The overall RX filter time is computed as follow:

RX Filter processing time (us) = (Nbfe1c * ((Lr+2) + (Lr+1+2)) + Nbfe2c * ((Lr+2) + 2*(Lr+1+2))) *

(1/CLK (MHz)) where

Nbfe1c = Number of filter element with 1 comparison, Nbfe2c = Number of filter element with 2

comparisons and the read latency Lr (defined in number of CLK clock cycles)

1.4.5.24 Local Memory Controller

The XCAND_MH_MEM_CTRL block is in charge of reading and writing the L_MEM through its AXI4

master interface MEM_AXI (compliant to AMBA 4 ARM Ltd protocol, see [5]).

The L_MEM Controller manages all requests and data transfers for the different blocks running

concurrently:

• The writes of TX descriptors from the XCAND_DESC block

• The read of RX filter elements from the XCAND_RX_PATH

• The read of TX descriptor from XCAND_TX_PATH when a message has to be sent

• The read of TX descriptor from XCAND_TX_PATH for TX SCAN (selection of the highest priority

TX message)

1.4.5.24.1 Local Memory Side Band Signals

It is assumed that the L_MEM provides safety measure to protect data. The safety protection

implemented in the L_MEM could either report error when reading a data (Single Error Detection) or

be able to correct it in some cases (Single Error Correction and Double Error Detection for example).

To address those two options, two input side band signals denominated MEM_SFTY_CE and

MEM_SFTY_UE, are provided with the MEM_AXI interface.

Here below are the expected behavior of those signals and the expected response on the MEM_AXI

interface:

• Error Detection Only: When a corrupted data is read from the L_MEM, a pulse of one CLK clock cycle

must be generated on the MEM_SFTY_UE input signal. The MEM_AXI interface must report a

MH_2603

MH_2604

MH_1016

MH_1017

MH_1018

MH_1019

MH_1020

MH_1021

MH_1022

MH_3042

MH_3043

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

200 | 306

SLVERR response on the MEM_AXI bus. The MEM_SFTY_UE input signal can be fully asynchronous

to the MEM_AXI interface.

• Error Detection and Correction: When a corrupted data is read from the L_MEM but is corrected, a

pulse of one CLK clock cycle must be generated on the MEM_SFTY_CE input signal. The MEM_AXI

interface must report an OKAY response on the MEM_AXI bus. The MEM_SFTY_CE input signal can

be fully asynchronous to the MEM_AXI interface.

1.4.5.24.2 Address Bus

The XCAND_MH_MEM_CTRL block is able to address up to 64Kbyte memory space

(MEM_AXI_AWADDR[15:0] and MEM_AXI_ARADDR[15:0]).

The address burst value is always 32bit aligned.

1.4.5.24.3 Burst Size

The maximum number of bytes to transfer in each data transfer is fixed and set to 4. Any read or write

transfer is always using 32bit.

As a consequence, the write strobe signals are not managed by the XCAND_MH_MEM_CTRL as all 4

bytes are always written.

1.4.5.24.4 Burst Length

The L_MEM Controller for the AXI read and write transfers supports INCR burst length 1, 2 and 8

considering an AXI 32bit data bus width.

The burst length from/to the L_MEM is defined based on the data type of information to be used.

Here below are the expected burst lengths from/to the different sub-blocks:

• XCAND_MH_DESC: This sub-block writes the TX descriptor allocated to TX FIFO Queues and

TX Priority Queue slots. The burst length is fixed and set to 8x32bit. There is no read

access from this sub-module.

• XCAND_MH_RX: This sub-block reads the RX filter elements and reference/mask values to

perform the RX message filtering. The burst length is set to 1x32bit for the RX filter

element and 2x32bit for the reference/mask value. There is no write access from this sub-

module.

• XCAND_MH_TX: This sub-block reads two types of information, the TX descriptor to be sent

as the next candidate to the TX_MSG interface and part of the TX descriptors assigned to

TX FIFO Queues and TX Priority Queue slots. A fixed burst length of 1x32bit is used for the

TX SCAN and 8x32bit is used for the TX descriptor.

MH_1023

MH_1024

MH_1025

MH_1026

MH_1027

MH_1028

MH_1029

MH_1030

MH_1031

MH_1032

MH_1033

MH_1034

MH_1035

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

201 | 306

1.4.5.24.5 Outstanding

As the L_MEM can be shared across several X_CAN instances and many accesses are required for RX

filtering and TX SCAN, 2 outstanding read transactions can support. As only a few writes are required

from the MH point of view, only 1 outstanding write transaction is supported.

1.4.5.24.6 Burst Type

The only burst type supported is the burst incrementing INCR.

The WRAP/FIXED burst type is not supported.

1.4.5.24.7 Multi-region

The L_MEM Controller does not support multiple region interfaces, see [5] for more details.

1.4.5.24.8 Memory Attributes

The memory attributes for the read or write accesses to the L_MEM is Normal, Non-modifiable (Non-

cacheable in AXI3) and Non-bufferable. No read-allocate nor No Write-allocate are expected on this

interface and would be set to 0. This means MEM_AXI_AWCACHE[3:0] and MEM_AXI_ARCACHE[3:0]

are set to 0b0000.

As a reminder, Non-bufferable means (See [5] for more details):

• The write response must be obtained from the destination.

• Read data must be obtained from the destination.

• Transactions are Non-modifiable

• Read and write transactions from the same ID to addresses that overlap must remain

ordered.

As a reminder, Non-modifiable means:

• A Non-modifiable transaction must not be split into multiple transactions or merged with

other transactions.

• In a Non-modifiable transaction, the parameters AxADDR, AxSIZE, AxLEN, AxBURST and

AxPROT must not be changed.

1.4.5.24.9 Access Permissions

It is considered that any access is always defined as a Data, Secure and the operating mode is

Unprivileged, see [5] for more details. Those setting cannot be changed by SW.

Therefore, any access from the MH which needs to be non-secure, must be managed with an external

and dedicated logic attached to the MEM_AXI interface.

As an example, the RX filter elements and reference/mask can be stored in a secure area in the

L_MEM, as a consequence the MEM_AXI_ARPROT[1] and MEM_AXI_AWPROT[1] are set to 0. Doing so,

MH_1036

MH_1037

MH_1038

MH_1040

MH_2663

MH_1041

MH_1042

MH_1043

MH_1044

MH_1045

MH_1046

MH_1047

MH_1048

MH_1050

MH_2647

MH_2648

MH_2649

MH_1051

MH_1052

MH_1053

MH_1054

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

202 | 306

the MH is able to read secure and non-secure data in the L_MEM, with the assumption that non-secure

area is always accessible by a secure access. This means MEM_AXI_A(W/R)PROT[2:0] is set to 0b000.

1.4.5.24.10 Transaction ID

The L_MEM Controller builds the ID of every burst access based on the source of request. It provides

a way to track which sub-block is doing the access at any time on the system bus.

For the AXI read interface, the MEM_AXI_ARID[1:0] defines the channel number as follow:

2’b00 => XCAND_MH_TX reads TX descriptor from L_MEM

2’b01 => XCAND_MH_TX read part of TX descriptor from L_MEM for TX SCAN

2’b10 => XCAND_MH_RX reads RX filter elements and reference/mask values from L_MEM

2’b11 => Reserved

For the AXI write interface, the MEM_AXI_AWID[0] defines the channel number as follow:

1’b0 => XCAND_MH_DESC writes TX descriptor to L_MEM

1’b1 => Reserved

1.4.5.25 Trace and Debug

1.4.5.25.1 Interrupts

For integration verification, it is possible to trigger functional and safety interrupts by SW. Here is the

procedure:

1) Unlock the DEBUG_TEST_CTRL register, see section Lock Mechanism Protection in Register

Protection chapter

2) Write the DEBUG_TEST_CTRL.TEST_IRQ_EN bit to 1 in Privileged mode

3) Once the access to the INT_TEST0 and INT_TEST1 registers are allowed (always accessible once

opened), write 1 to the relevant bit to set the appropriate interrupt line.

Re-lock the access to the INT_TEST0 and INT_TEST1 registers. Step 1) and 2) needs to be done with

DEBUG_TEST_CTRL.TEST_IRQ_EN bit set to 0 instead.

1.4.5.25.2 Hardware Debug Port

The 16bit HDP bus provides some visibility to internal signals to debug the MH. By default, there is no

activity on the HDP bus.

To enable the toggling of the HW signal on the HDP bus, set the DEBUG_TEST_CTRL.HDP_EN bit to 1.

1) Unlock the DEBUG_TEST_CTRL register, see section Lock Mechanism Protection in Register

Protection chapter

2) Write the DEBUG_TEST_CTRL.HDP_EN bit to 1 and the selected set to be monitored on the HDP

using the DEBUG_TEST_CTRL.HDP_SEL[2:0]. This access must be done in Privileged mode.

MH_1055

MH_1056

MH_1057

MH_1058

MH_1059

MH_1060

MH_1061

MH_1062

MH_1063

MH_1064

MH_1065

MH_1066

MH_1067

MH_3006

MH_1068

MH_1069

MH_3007

MH_1070

MH_1071

MH_1072

MH_3008

MH_3009

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

203 | 306

To disable the Hardware Debug Port monitoring, do the previous set with DEBUG_TEST_CTRL.HDP_EN

bit to 0.

Up to 8 sets can be defined using the DEBUG_TEST_CTRL.HDP_SEL[2:0] bit field. When the value is

set to n the set n is selected on the HDP bus.

INTERRUPTS:

The interrupt line assigned to the RX or TX FIFO Queue can be monitored individually. Therefore, it is

possible to track the activity of the FIFO Queues while they are running. To allow the visibility of all

MH interrupts, on the same HDP set, the TX FIFO Queues interrupt lines are gathered to only one

single HW internal signal called TX_FQ_IRQ_ORED (the interrupts are 'ored'). The same is done on the

RX FIFO Queues and so the interrupts are 'ored' to provide the HW internal signal RX_FQ_IRQ_ORED.

IMPORTANT: There are two possible sources to trig an interrupt (valid for TX_FQ_IRQ[7:0],

RX_FQ_IRQ[7:0] and TX_PQ_IRQ interrupt lines): one is related to functional and the other one is from

the INT_TEST0 and INT_TEST1 registers (for integration test only). Only the functional interrupt source

is displayed on the HDP set. Therefore, when an interrupt is triggered, by a write access to either

INT_TEST0 or INT_TEST1 register, it will not be visible on the HDP. Nevertheless, the interrupt line is

properly set at the MH interface.

INTERFACES:

To ensure the traceability of the traffic going from and to the MH, the following interfaces can be

monitored through one of the HDP sets:

• DMA_AXI interface (control signals) used to manage RX/TX descriptors and RX/TX message data

• MEM_AXI interface (control signals) used to manage TX descriptors for TX-Scan and RX filtering

• TX_MSG interface (control signals) used to transmit TX message from MH to PRT

• RX_MSG interface (control signals) used to receive RX message from PRT to MH

Here below are the description of sets available on the MH HDP bus.

HDP[15:0]
Set 0

(Interrupts)

Set 1

(RX and TX path)

15 TX_FQ_IRQ[7] CLK

14 TX_FQ_IRQ[6] TX_FQ_IRQ_ORED

13 TX_FQ_IRQ[5] RX_FQ_IRQ_ORED

12 TX_FQ_IRQ[4] TX_PQ_IRQ

11 TX_FQ_IRQ[3] RX_FILTER_ERR

10 TX_FQ_IRQ[2] RX_FILTER_IRQ

9 TX_FQ_IRQ[1] TX_FILTER_IRQ

8 TX_FQ_IRQ[0] STATS_IRQ

7 RX_FQ_IRQ[7] TX_ABORT_IRQ

6 RX_FQ_IRQ[6] RX_ABORT_IRQ

5 RX_FQ_IRQ[5] DP_SEQ_ERR

MH_3011

MH_1073

MH_2593

MH_3203

MH_2599

MH_1074

MH_2597

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

204 | 306

HDP[15:0]
Set 0

(Interrupts)

Set 1

(RX and TX path)

4 RX_FQ_IRQ[4] DP_DO_ERR

3 RX_FQ_IRQ[3] STOP_IRQ

2 RX_FQ_IRQ[2] RESP_ERR[1]

1 RX_FQ_IRQ[1] RESP_ERR[0]

0 RX_FQ_IRQ[0] ENABLE

HDP[15:0]
Set 2

(TX Scan)

Set 3

(MH-PRT Interface)

15 FH_OFFSET[9] CLK

14 FH_OFFSET[8] TX_MSG_WVALID

13 FH_OFFSET[7] TX_MSG_WUSER[1]

12 FH_OFFSET[6] TX_MSG_WUSER[0]

11 FH_OFFSET[5] TX_MSG_WREADY

10 FH_OFFSET[4] TX_MSG_BVALID

9 FH_OFFSET[3] TX_MSG_BUSER_STATUS[2]

8 FH_OFFSET[2] TX_MSG_BUSER_STATUS[1]

7 FH_OFFSET[1] TX_MSG_BUSER_STATUS[0]

6 FH_OFFSET[0] TX_MSG_BREADY

5 FH_FQN_PQN[4] RX_MSG_WVALID

4 FH_FQN_PQN[3] RX_MSG_WUSER[2]

3 FH_FQN_PQN[2] RX_MSG_WUSER[1]

2 FH_FQN_PQN[1] RX_MSG_WUSER[0]

1 FH_FQN_PQN[0] RX_MSG_WREADY

0 FH_PQ ENABLE

HDP[15:0]
Set 4

(Write AXI DMA Interface)

Set 5

(Read AXI DMA Interface)

15 CLK CLK

14 DMA_AXI_BID[0] DMA_AXI_RID[1]

13 DMA_AXI_BVALID DMA_AXI_RID[0]

12 DMA_AXI_BREADY NA

11 DMA_AXI_BRESP[1] DMA_AXI_RRESP[1]

10 DMA_AXI_BRESP[0] DMA_AXI_RRESP[0]

9 DMA_AXI_WREADY DMA_AXI_RREADY

8 DMA_AXI_WVALID DMA_AXI_RVALID

7 DMA_AXI_WLAST DMA_AXI_RLAST

MH_1075

MH_2628

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

205 | 306

HDP[15:0]
Set 4

(Write AXI DMA Interface)

Set 5

(Read AXI DMA Interface)

6 NA DMA_AXI_ARID[1]

5 DMA_AXI_AWID[0] DMA_AXI_ARID[0]

4 DMA_AXI_AWVALID DMA_AXI_ARVALID

3 DMA_AXI_AWREADY DMA_AXI_ARREADY

2 DMA_AXI_AWLEN[2] DMA_AXI_ARLEN[2]

1 DMA_AXI_AWLEN[1] DMA_AXI_ARLEN[1]

0 DMA_AXI_AWLEN[0] DMA_AXI_ARLEN[0]

HDP[15:0]
Set 6

(Write AXI MEM Interface)

Set 7

(Read AXI MEM Interface)

15 CLK CLK

14 MEM_AXI_BID[0] MEM_AXI_RID[1]

13 MEM_AXI_BVALID MEM_AXI_RID[0]

12 MEM_AXI_BREADY NA

11 MEM_AXI_BRESP[1] MEM_AXI_RRESP[1]

10 MEM_AXI_BRESP[0] MEM_AXI_RRESP[0]

9 MEM_AXI_WREADY MEM_AXI_RREADY

8 MEM_AXI_WVALID MEM_AXI_RVALID

7 MEM_AXI_WLAST MEM_AXI_RLAST

6 NA MEM_AXI_ARID[1]

5 MEM_AXI_AWID[0] MEM_AXI_ARID[0]

4 MEM_AXI_AWVALID MEM_AXI_ARVALID

3 MEM_AXI_AWREADY MEM_AXI_ARREADY

2 MEM_AXI_AWLEN[2] MEM_AXI_ARLEN[2]

1 MEM_AXI_AWLEN[1] MEM_AXI_ARLEN[1]

0 MEM_AXI_AWLEN[0] MEM_AXI_ARLEN[0]

1.4.5.25.3 TX-Scan

In order to keep track of the TX-Scan process, some registers provide the relevant information to

observe the selection of the next TX message, meaning, which TX FIFO Queue number and which

message within this FIFO Queue is selected, or which TX Priority Queue slot number. The TX_SCAN_FC

and TX_SCAN_BC registers are monitoring the TX-Scan activity, see Software Interface chapter for

more details. The duration of a CAN frame is large enough to make it possible, to read those registers

in time and get some valuable information.

MH_2629

MH_2162

MH_2163

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

206 | 306

The TX_SCAN_FC register provides the information of the source of the four first candidates selected

by the TX-Scan., meaning the TX FIFO Queue number or the TX Priority Queue slot number.

The source of the two first candidates are defined by:

• The TX_SCAN_FC.FQ_PQ{n} (n € {0, 1}) bit register: when set to 0, the first or second candidate

is a TX FIFO Queue. In fact, TX_SCAN_FC.FQ_PQ0 = TX_SCAN_BC.FH_PQ and

TX_SCAN_FC.FQ_PQ1 = TX_SCAN_BC.SH_PQ, see TX_SCAN_BC register description below

• The TX_SCAN_FC.FQN_PQSN{n} (n € {0, 1}) bit register: define either a TX FIFO Queue number

or a TX Priority Queue slot number according to the TX_SCAN_FC.FQ_PQ{n} (n € {0, 1}) bit

register. In fact, TX_SCAN_FC.FQN_PQSN0 = TX_SCAN_BC.FH_FQN_PQSN and

TX_SCAN_FC.FQN_PQSN1 = TX_SCAN_BC.SH_FQN_PQSN, see TX_SCAN_BC register description

below

• The two sources of the last two candidates are monitoring the selection of a TX-Scan. It is

essential to note that the value in those registers is not stable, compare to the source of the

two first candidate, and will change during a TX-Scan run. When the TX_SCAN_FC.FQ_PQ{n} (n

€ {0, 1, …, 3}) is set to 0, the candidate n is a TX FIFO Queue, looking at the

TX_SCAN_FC.FQN_PQSN{n} (n € {0, 1, …, 3} bit field, provides the number. If the

TX_SCAN_FC.FQ_PQ{n} (n € {0, 1, …, 3}) is set to 1, the candidate n is a TX Priority Queue

and the slot number is defined by the TX_SCAN_FC.FQN_PQSN{n} (n € {0, 1, …, 3} bit field.

The value of the TX_SCAN_FC register is updated when a new TX Scan result is available, see TX-SCAN

chapter.

The TX_SCAN_BC register gives the full reference of the first and second highest priority messages,

defined and uploaded at the end of a TX-Scan run (see Buffer A and B in TX Message Handler

chapter). The first highest candidate is the one selected and sent to the CAN bus. The second highest

priority candidate is the TX message to be sent, once the transmission of the first highest candidate is

completed. The register values provide full visibility of the two message candidates stored locally in

Buffer A and B, see TX Message Handler chapter for more details. As such, those registers are stable

over time and do change only after at the end of a TX-Scan.

The first best candidate is defined by:

• The TX_SCAN_BC.FH_PQ bit register: when set to 0, the candidate is a TX FIFO Queue

• The TX_SCAN_BC.FH_FQN_PQSN bit register: define either a TX FIFO Queue number or a TX

Priority Queue slot number according to the TX_SCAN_BC.FH_PQ bit register

• The TX_SCAN_BC.FH_OFFSET bit register: define the offset (in 32byte) of the TX descriptor

selected, starting from the initial start address of the TX FIFO Queue (defined in the

TX_SCAN_BC.FH_FQN_PQS bit register) with TX descriptor address = TX FIFO Queue start

address + offset * 32byte. When the candidate is a TX Priority Queue slot, the

TX_SCAN_BC.FH_OFFSET register has no meaning and is set to 0.

The second best candidate is defined by:

• The TX_SCAN_BC.SH_PQ bit register: when set to 0, the candidate is a TX FIFO Queue

• The TX_SCAN_BC.SH_FQN_PQSN bit register: define either the TX FIFO Queue number or the TX

Priority Queue slot number according to the TX_SCAN_BC.FH_PQ bit register

• The TX_SCAN_BC.SH_OFFSET bit register: define the offset (in 32byte) of the TX descriptor

selected, starting from the initial start address of the TX FIFO Queue (defined in the

MH_3146

MH_3145

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

207 | 306

TX_SCAN_BC.SH_FQN_PQSN bit register) with TX descriptor address = TX FIFO Queue start

address + offset * 32byte. It is important to note that, when the TX FIFO queue selected for the

first best candidate is identical to the one for the second, the offset would be also identical. In

such scenario, the second best candidate is always the next TX descriptor of that TX FIFO

Queue. When the candidate is a TX Priority Queue slot, the TX_SCAN_BC.SH_OFFSET register

has no meaning and is set to 0

1.4.5.25.4 TX Descriptor Tracking in a TX FIFO Queue

The current and next TX descriptors for a given TX FIFO Queue n are stored in the L_MEM and can be

identified in the TX_FQ_DESC_VALID.DESC_NC_VALID[n] and TX_FQ_DESC_VALID.DESC_CN_VALID[n]

bit registers.

Here is the status for those bit registers when progressing with the TX FIFO Queue n:

Initial start:

1) The current TX descriptor (first one in case this is an initial start) fetched from S_MEM and written

to L_MEM is leading to TX_FQ_DESC_VALID.DESC_CN_VALID[n] = 1 and

TX_FQ_DESC_VALID.DESC_NC_VALID[n] = 0.

2) If the current TX descriptor is about to be sent go to 3), otherwise stay in 2) and no updates are

done on bit registers.

3) The next descriptor is fetched from S_MEM and written in L_MEM.

• If the next TX descriptor is not valid then the TX FIFO Queue n is put on hold. The

TX_FQ_DESC_VALID.DESC_CN_VALID[n] set to 1, goes to 0 once the TX message is sent

(TX_FQ_DESC_VALID.DESC_NC_VALID[n] =0).

• If the descriptor is valid, TX_FQ_DESC_VALID.DESC_CN_VALID[n] = 1 and

TX_FQ_DESC_VALID.DESC_NC_VALID[n] =1, go to 4)

4) When the current TX message is fully sent, TX_FQ_DESC_VALID.DESC_CN_VALID[n] = 0 and

TX_FQ_DESC_VALID.DESC_NC_VALID[n] =1.

5) If the current TX descriptor is about to be sent go to 6), otherwise stay in 5) and no updates are

done on bit registers.

6) The next descriptor is fetched from S_MEM and written in L_MEM.

• If the next TX descriptor is not valid then the TX FIFO Queue n is put on hold. The

TX_FQ_DESC_VALID.DESC_NC_VALID[n] set to 1, goes to 0 once the TX message is sent

(TX_FQ_DESC_VALID.DESC_CN_VALID[n] =0).

• If the descriptor is valid, TX_FQ_DESC_VALID.DESC_NC_VALID[n] = 1 and

TX_FQ_DESC_VALID.DESC_CN_VALID[n] =1, go to 7)

7) When the current TX message is fully sent, TX_FQ_DESC_VALID.DESC_NC_VALID[n] = 0 and

TX_FQ_DESC_VALID.DESC_CN_VALID[n] =1, go to 2)

1.4.5.25.5 TX Descriptor Tracking in TX Priority Queue

MH_2928

MH_2929

MH_2930

MH_2931

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

208 | 306

As soon as a TX Priority Queue slot n is started, the corresponding TX descriptor is fetched from the

S_MEM and written to the L_MEM. When the TX descriptor assigned to the slot n is fully written in the

L_MEM, the TX_PQ_DESC_VALID.DESC_VALID[n] is set to 1.

If the TX descriptor fetched is not valid or has any safety issue, the

TX_PQ_DESC_VALID.DESC_VALID[n] is not set. In case the TX message of the slot n is discarded, the

TX_PQ_DESC_VALID.DESC_VALID[n] is set back to 0.

1.4.5.25.6 Safety Measures

If a safety measure is active and an issue is detected, the MH may stop. Therefore, it would be difficult

for the SW to analyze and identify the possible root causes. To allow such debugging, every embedded

safety measure can be disabled individually, see MH_SFTY_CTRL register.

1.4.5.26 RX and TX Statistics

1.4.5.26.1 RX Statistic Counters

Two 12bit counters are provided to keep track of how many messages have been received

successfully/unsuccessfully, see RX_STATISTICS register. When a counter has reached the maximum

value, it will wrap to zero with the next increment. The counters can be cleared (set to 0) by writing 0

to the dedicated register bit field. To identify when counters are wrapping, the STATS_IRQ interrupt

line is triggered to the system. To identify the counter which has wrapped, a read to the

STATS_INT_STS register is required. Writing a 1 to the corresponding bit will clear the bit.

Here is the list of root cause to increment the RX_STATISTICS.SUCC[11:0] counter:

• When a RX message is stored in S_MEM and its RX Header descriptor is acknowledged

Here is the list of root cause to increment the RX_STATISTICS.UNSUCC[11:0] counter.

Safety or Errors:

• When a RX data parity error is detected

• When an RX address pointer parity error is detected

• When an RX descriptor error (request, CRC or invalid) is detected and used for the current RX

message

Functional:

• When an ABORT code word is received from the PRT

• When a DO code word is received from the PRT

• When the RX message cannot be written to the RX FIFO Queue (queue not enabled and/or

started)

• When a data overflow occurs on the RX DMA FIFO

• When a new RX message is received while one is already in progress

• When the PRT ENABLE signal is going from High to Low when receiving an RX frame

NOTE: an ABORT codeword from PRT, for an arbitration lost, does not increment the counter of

unsuccessful transmissions.

MH_3204

MH_3205

MH_1076

MH_2951

MH_1077

MH_2949

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

209 | 306

1.4.5.26.2 TX Statistic Counters

Two 12bit counters are provided to keep track of how many messages have been transmitted

successfully/unsuccessfully, see TX_STATISTICS register. When a counter has reached the maximum

value, it will wrap to zero with the next increment. The counters can be cleared (set to 0) by writing 0

to the dedicated register bit field. To identify when counters are wrapping, the STATS_IRQ interrupt

line is triggered to the system. To identify the counter which has wrapped, a read to the

STATS_INT_STS register is required. Writing a 1 to the corresponding bit will clear the bit.

NOTE: an ABORT codeword from PRT, for an arbitration lost, does not increment the counter.

Here is the list of root cause to increment the TX_STATISTICS.SUCC[11:0] counter:

• When a TX message is fully sent to the PRT, and its TX Header descriptor is acknowledged

Here is the list of root cause to increment the TX_STATISTICS.UNSUCC[11:0] counter.

Safety or Errors:

• Not applicable

Functional:

• When a HFI code word is received from the PRT

• When the maximum number of transmissions allowed for a given TX message is reached

• When the TX filtering has rejected a TX message

1.4.5.27 Register Access

The MH registers are accessible in read/write mode through its AXI4-Lite slave interface HOST_AXI

(compliant to AMBA 4 ARM Ltd protocol, see [5]).

Any access to registers, either read or write, must use a 32bit aligned address, otherwise a SLVERR is

provided as a response.

When an access is performed to a non-mapped register in the address range, a SLVERR is provided as

a response.

When a read access to write-only registers or a write access to read-only registers is performed, a

SLVERR is provided as a response.

When an access is performed to a write-only Privileged register in the address range, a SLVERR is

provided as a response.

The phrase ‘SLVERR is provided as a response’ means that the HOST_AXI responds with RRESP =

‘SLVERR’ respective BRESP = ‘SLVERR’.

The error is only reported on the AXI4-Lite protocol, no interrupt is triggered for such issue.

MH_2952

MH_1078

MH_2950

MH_1079

MH_1080

MH_1081

MH_1082

MH_3021

MH_3046

MH_2664

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

210 | 306

The register interface does not provide any access to the L_MEM. It would in charge of the integrator

to provide a direct access to the L_MEM to write the relevant data for the MH.

1.4.5.28 Register Protection

1.4.5.28.1 Lock Mechanism Protection

To secure the access to some of the critical registers, an unlock key sequence is required prior to any

write-modified access. This procedure must be done before every write to a locked register. As soon

as the write is completed, the register is automatically set back to lock mode.

When an access is performed to a locked register, a SLVERR is provided as a response. The error is

only reported on the AXI4-Lite protocol, no interrupt is triggered for such issue.

Two locks are provided for two different purposes:

• A lock that protects the register in charge of stopping RX and TX FIFO Queues as well as TX

Priority Queue slots

• A lock that protects the MH to be set in debug mode

Functional Lock

This sequence is based on three steps as defined below:

• Write 0x1234 to the LOCK.ULK[15:0] bit field register

• Write 0x4321 to the LOCK.ULK[15:0] bit field register

• Write to the unlocked register the expected value

Once the write is performed to the register, it will automatically be locked again.

The following list of registers are using this protection:

• TX_FQ_CTRL1

• TX_PQ_CTRL1

• RX_FQ_CTRL1

Test Mode Lock

An unlock key sequence is required to access the registers assigned to debug and test purpose in

write mode. This procedure must be done before any write action is executed to the locked registers.

This sequence is based on three steps as defined below:

• Write 0x6789 to the LOCK.TMK[15:0] bit field register

• Write 0x9876 to the LOCK.TMK[15:0] bit field register

• Write to the unlocked register the expected value

Once the write is performed to the register, it will automatically be locked again.

The only register using this specific key sequence is the DEBUG_TEST_CTRL register as it does control

the debug mode.

MH_2590

MH_1083

MH_1084

MH_1085

MH_1086

MH_1087

MH_1088

MH_1089

MH_1090

MH_1091

MH_1092

MH_1093

MH_1094

MH_1095

MH_1096

MH_1097

MH_1098

MH_1099

MH_1100

MH_1101

MH_1102

MH_1103

MH_1104

MH_1105

MH_1106

MH_1107

MH_1108

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

211 | 306

1.4.5.28.2 Conditional Access Protection

Some registers can be written if a bit, that is defined in another register, allows the access. As long as

this conditional bit has the right value, any single or consecutive writes can be performed.

Configuration registers are protected by this mechanism to avoid any changes while the logic is

running.

When an access is performed to a write protected register, a SLVERR is provided as a response. The

error is only reported on the AXI4-Lite protocol, no interrupt is triggered for such issue.

The registers with conditional accesses are defined in table below.

Table: Conditional Access Register List

Register Name Condition to write access Description/Constraints

MH_CFG MH_STS.BUSY=0 The register can be written

if the MH is not running MH_SFTY_CFG

MH_SFTY_CTRL

RX_FILTER_MEM_ADD

TX_DESC_MEM_ADD

AXI_ADD_EXT

AXI_PARAMS

TX_FILTER_CTRL0

TX_FILTER_CTRL1

TX_FILTER_REFVAL0

TX_FILTER_REFVAL1

TX_FILTER_REFVAL2

TX_FILTER_REFVAL3

RX_FILTER_CTRL

TX_FQ_START_ADD{n} TX_FQ_STS0.BUSY[n] = 0 The register can be written

if the TX FIFO Queue n is

not running (n € {0, 1, 2,

…, 7})

TX_FQ_SIZE0{n}

TX_PQ_START_ADD TX_PQ_STS0 = 0x00000000 The register can be written

if no TX Priority Queue slots

are running

RX_FQ_START_ADD{n} RX_FQ_STS0.BUSY[n] = 0x00 The register can be written

if the RX FIFO Queue n is

not running (n € {0, 1, 2,

…, 7})

RX_FQ_SIZE{n}

RX_FQ_DC_START_ADD{n}

INT_TEST0 DEBUG_TEST_CTRL.TEST_IRQ_EN = 1 The interrupt lines can be

trigger by SW if the

interrupt test mode is

enabled

INT_TEST1

MH_1109

MH_3047

MH_1110

MH_1111

MH_1112

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

212 | 306

1.4.5.28.3 Register Access Mode

To protect the Debug/Integration Test functions and RX/TX filtering setting, the following registers can

only be written using Privileged/Non-secure/Data access (HOST_AXI_AWPROT[0] = 1):

• TX_FILTER_CTRL0

• TX_FILTER_CTRL1

• TX_FILTER_REFVAL0

• TX_FILTER_REFVAL1

• TX_FILTER_REFVAL2

• TX_FILTER_REFVAL3

• RX_FILTER_CTRL

• DEBUG_TEST_CTRL

Other registers than the ones listed above can use Normal/Non-secure/Data access.

1.4.5.28.4 Register CRC Computation

To protect the MH configuration, control and configuration registers are protected using CRC. A

reference CRC, computed by the SW, is set to a register, and compare with an internal CRC value

computed by the MH. It is important to note that some of the registers won't be accessible once the

MH is started, MH_STS.BUSY set to 1, refer to Conditional Access Protection and Lock Mechanism

Protection sections for more details.

Once the overall MH setting is done and only when there are no more changes on the control and

configuration register, do the following:

• The SW must provide the expected CRC for list of protected registers. The CRC reference value

must be computed, only for the registers defined as CRC protected, starting from the lowest

address offset. The order of the register to be considered for the CRC computation is defined

below (all register values will be checked). The CRC is computed using the 32bit value of the

register defined in the list.

• Once the 32bit CRC value is computed by SW, it must be written to the CRC_REG register. The

write access to this register does not trig a CRC check

• To check the CRC for the registers, set the CRC_CTRL.START bit to 1. The MH goes through the

list of CRC protected registers and compute the global CRC. After a few cycles, the CRC

reference value in the CRC_REG register is compared with the one already computed. If a CRC

error is detected, the REG_CRC_ERR interrupt signal is triggered. As the check is only done and

control by SW, there is no enable defined

Nothing is preventing the SW to launch at a regular time interval a CRC check by setting the

CRC_CTRL.START bit to 1.

It is recommended to perform a register CRC check, for any new configuration, to ensure a proper

setting before starting the MH.

MH_3200

MH_3201

MH_3202

MH_3158

MH_3159

MH_3160

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

213 | 306

Here below is the list of registers protected by CRC, in the order they need to be considered (refer to

sections in Register Protection chapter for register accessibility):

• VERSION

• MH_CFG

• MH_SFTY_CFG

• MH_SFTY_CTRL

• RX_FILTER_MEM_ADD

• TX_DESC_MEM_ADD

• AXI_ADD_EXT

• AXI_PARAMS

• LOOP n from 0 to 7

• TX_FQ_START_ADD{n}

• TX_FQ_SIZE{n}

• END LOOP

• TX_PQ_START_ADD

• LOOP n from 0 to 7

• RX_FQ_START_ADD{n}

• RX_FQ_SIZE{n}

• RX_FQ_DC_START_ADD{n}

• END LOOP

• TX_FILTER_CTRL0 (Privileged)

• TX_FILTER_CTRL1 (Privileged)

• LOOP n from 0 to 3

• TX_FILTER_REFVAL{n} (Privileged)

• END LOOP

• RX_FILTER_CTRL (Privileged)

• DEBUG_TEST_CTRL (Privileged)

• INT_TEST0

• INT_TEST1

Here below is the normal polynomial representation and implementation of the CRC-32 used to

protect the registers:

CRC-32 = (x32 +x26 +x23 +x22 +x16 +x12 +x11 +x10 +x8 +x7 +x5 +x4 +x2 +x +1) ‡

Here below is the pseudo code to compute the CRC for the MH register bank:

The reg_table[] is the array of 32bit registers defined previously (in the order they are listed):

static logic[31:0] rem32 = 32'hffffffff;

static logic[31:0] rem32_old = 32'hffffffff;

static logic[31:0] poly = 32'h4c11db7;

static logic[31:0] crc32;

// initialize CRC shift register

// This algorithm is indirect

MH_3199

MH_3178

MH_3170

MH_3172

MH_3173

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

214 | 306

rem32 = 32'hffffffff;

foreach (reg_table[i]) begin

 for (int j = 31; j >= 0; j--) begin

 // to decide whether reduction with polynomial will be required based on MSB before shift

 rem32_old = rem32;

 // shift out MSB of CRC

 rem32 = rem32 << 1;

 rem32[0] = reg_table[i].get()[j];

 // perform reduction if required

 if (rem32_old[31]) rem32 = rem32 ^ poly;

 end

end

// processing 32 0s more

repeat(32) begin

 // to decide whether reduction with polynomial will be required based on MSB before shift

 rem32_old = rem32;

 // shift out MSB of CRC

 rem32 = rem32 << 1;

 rem32[0] = 0;

 // perform reduction if required

 if (rem32_old[31]) rem32 = rem32 ^ poly;

end

crc32 = rem32;

1.4.5.29 Error and Exception Handling

Here is the list of potential issues the MH may have to handle and how it will react:

Error source Interrupt MH behavior

MH

RX acknowledge

path overflow

Acknowledge data

not sent in time

before new one

needs to be stored

DP_DO_ERR The current RX message is discarded and an

RX_ABORT_IRQ is triggered to the system.

The interrupt DP_DO_ERR is triggered to the

system and the

ERR_INT_STS.DP_RX_ACK_DO_ERR bit status

register is set to 1. The MH finishes its

MH_1113

MH_1114

MH_1115

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

215 | 306

Error source Interrupt MH behavior

current transactions and stops with

MH_CTRL.BUSY = 0. The SW needs to restart

it and the MH will keep going with its

current task.

TX acknowledge

path overflow

Acknowledge data

not sent in time

before the new

one being stored

DP_DO_ERR As soon as an acknowledge data locally

stored and ready to be send cannot be done

(due to some overflow) no new messages

will be sent to the PRT. The DP_DO_ERR

interrupt is triggered to the system and the

ERR_INT_STS.DP_TX_ACK_DO_ERR bit status

register is set to 1. The MH finishes its

current transactions and stops with

MH_CTRL.BUSY = 0. The SW needs to restart

it and the MH will keep going with its

current task.

RX DMA FIFO

overflow

The FIFO overflow

on the RX path

DP_DO_ERR The current RX message is discarded and an

RX_ABORT_IRQ is sent to the system. The

already RX descriptors used are allocated

for the next message. No status is sent back

to the Header Descriptor. The MH keeps

receiving RX message despite this temporary

issue. The

ERR_INT_STS.DP_RX_FIFO_DO_ERR bit

status register is set to 1.

RX DMA FIFO

above threshold

while RX filtering

in progress

The RX filter has

not completed in

time to avoid a

potential overflow

NONE The current RX message is sent to the

default RX FIFO Queue as backup solution if

enable, see the RX_FILTER_CTRL register.

The threshold is defined to provide enough

time for the MH to write the message in

S_MEM. The RX Header descriptor of that RX

message will have its status report bit field

set to “message received but not filtered”.

The MH keeps receiving RX message.

RX descriptor

CRC error when

fetched from

S_MEM

A CRC error is

detected on RX

descriptor

DESC_ERR As the RX descriptor has a CRC error, the

related RX FIFO Queue is stopped and the

interrupt DESC_ERR is triggered to the

system, see RX_FQ_STS1, RX_FQ_STS0

registers. The

SFTY_INT_STS.RX_DESC_CRC_ERR bit status

register is set to 1. Other RX FIFO Queues

would still be running.

Wrong RX The expected DESC_ERR As the RX descriptor is not the one

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

216 | 306

Error source Interrupt MH behavior

descriptor

fetched from

S_MEM

descriptor is not

the one coming

back from S_MEM.

Several issue on

the address could

lead to such result

expected, the related RX FIFO Queue is

stopped and the interrupt DESC_ERR is

triggered to the system, see RX_FQ_STS1,

RX_FQ_STS0 registers. The

SFTY_INT_STS.RX_DESC_REQ_ERR bit status

register is set to 1. Other RX FIFO Queues

would still be running.

TX descriptor

CRC error when

fetched from

S_MEM

A CRC error is

detected on TX

descriptor when

fetched from

S_MEM

DESC_ERR As the TX descriptor has a CRC error, the

related TX FIFO Queue is stopped and the

interrupt DESC_ERR is triggered to the

system. The

SFTY_INT_STS.TX_DESC_CRC_ERR bit status

register is set to 1. Other TX FIFO Queues

would still be running. TX Priority Queue

slots are managed differently. If an issue

occurs on the TX descriptor the slot will

have its busy and sent flags set to 0, see

TX_PQ_STS0 and TX_PQ_STS1 registers.

Wrong TX

descriptor

fetched from

S_MEM

The expected

descriptor is not

the one coming

back from S_MEM.

Several issue on

the address could

lead to such result

DESC_ERR As the TX descriptor is not the one

expected, the related TX FIFO Queue is

stopped and the interrupt DESC_ERR is

triggered to the system. The

SFTY_INT_STS.TX_DESC_REQ_ERR bit status

register is set to 1. Other TX FIFO Queues

would still be running. TX Priority Queue

slots are managed differently. If an issue

occurs on the TX descriptor the slot will

have its busy and sent flags set to 0, see

TX_PQ_STS0 and TX_PQ_STS1 registers.

Wrong TX

descriptor

fetched from

L_MEM

The expected

descriptor is not

the one coming

back from L_MEM.

Several issue on

the address could

lead to such result

DESC_ERR The TX descriptor selected to be the next

message candidate is corrupted. Either the

related TX FIFO Queue is stopped (see

TX_FQ_STS0 and SFTY_INT_STS registers) or

the TX Priority Queue slot is set disable

(busy flag set to 0), see TX_PQ_STS0 and

SFTY_INT_STS registers). The interrupt

DESC_ERR is triggered to the system. The

SFTY_INT_STS.TX_DESC_REQ_ERR bit status

register is set to 1. Other TX FIFO Queues

would still be running as well as TX Priority

Queue slots.

Parity error One of the address AP_PARITY_ERR As the source of parity issue, could lead to

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

217 | 306

Error source Interrupt MH behavior

detected on TX

address pointers

pointers managing

the TX FIFO

Queues or the TX

Priority Queue is

corrupted

wrong memory accesses, the MH stops. The

MH finishes all pending data transfers and

then stops with MH_STS.BUSY = 0. The SW

is notified through the AP_PARITY_ERR

interrupt and the

SFTY_INT_STS.AP_TX_PARITY_ERR status bit

register is set to 1.

Parity error

detected on RX

address pointers

One of the address

pointers managing

the RX FIFO

Queues is

corrupted

AP_PARITY_ERR As the source of parity issue, could lead to

wrong memory accesses, the MH stops. The

MH finishes all pending data transfers and

then stops with MH_STS.BUSY = 0. The SW

is notified through the AP_PARITY_ERR

interrupt and the

SFTY_INT_STS.AP_RX_PARITY_ERR status bit

register is set to 1.

Register CRC

error

One of the

configuration

registers protected

by CRC is

corrupted

REG_CRC_ERR There is no way to define which register is

corrupted and to evaluate which part of the

logic would be impacted. The MH is

stopped. When receiving an RX message, the

current message is discarded, and all RX

FIFO Queues are stopped. When

transmitting a message, it is aborted. All TX

FIFO Queues are stopped, and all TX Priority

Queue slot are disabled. The interrupt

REG_CRC_ERR is sent to system

TX data path

sequence error

Any error sequence

detected on the

TX_MSG interface

DP_SEQ_ERR If any code word reported by the PRT does

not match the expected sequence the PRT

and MH are no more synchronized. The MH

finishes all pending data transfers and then

stops with MH_STS.BUSY = 0. the

DP_SEQ_ERR interrupt is triggered with the

ERR_INT_STS.DP_TX_SEQ_ERR bit status

register set to 1.

RX data path

sequence error

Any error sequence

detected on the

RX_MSG interface

DP_SEQ_ERR If any code word reported by the PRT does

not match the expected sequence the PRT

and MH are no more synchronized. The MH

finishes all pending data transfers and then

stops with MH_STS.BUSY = 0. the

DP_SEQ_ERR interrupt is triggered with the

ERR_INT_STS.DP_RX_SEQ_ERR bit status

register set to 1.

RX frame Due to a high RX_ABORT_IRQ As the current RX message has not complete

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

218 | 306

Error source Interrupt MH behavior

reception in

progress when

receiving a new

RX message

number of filter

elements and a

high latency on the

local memory, the

RX filtering

process may cover

almost the

shortest CAN

frame, leading to

an overlap on the

current and new

RX messages

prior receiving the next frame, the new

frame is discarded to provide the remaining

time to complete the process on the current

one. Therefore, any new RX message is

aborted with an RX_ABORT_IRQ interrupt.

RX filter not done

in time before a

new RX frame

The RX filter does

not complete in

time its process to

identify the RX

FIFO Queue

RX_FILTER_ERR When the RX filter is taking too much time

and a new RX message is coming, the

RX_FILTER_ERR interrupt is triggered. The

new RX message is discarded, see

RX_FILTER_CTRL register. The MH keeps

running on its current frame. Such interrupt

is a good indicator for SW to identify large

RX filtering time on some frames.

RX FIFO Queue

not enabled for

reception

The RX FIFO

Queue selected to

receive the RX

message is not

running, either not

set or wrongly set

RX_ABORT_IRQ The selected RX FIFO Queue defined after

the RX filtering process is disable. The MH

discards the RX message with the

RX_ABORT_IRQ interrupt. Every RX message

going to this disabled RX FIFO Queue will

trigger this interrupt. The SW must ensure

RX FIFO Queues are enable at first time.

The RX Filter

cannot send

message to the RX

FIFO Queue as it is

disable

RX_FILTER_ERR In case the RX Filter identifies an RX FIFO

Queue to receive an RX message, but this

queue is disable, the RX_FILTER_ERR

interrupt is triggered, and the current

message is discarded. The SW must ensure

RX FIFO Queues are enable at first time,

otherwise several interrupts will occur in a

row.

TX message

rejected by TX

filter

The Header

Descriptor is

filtered to ensure

only well-defined

TX message can go

through

TX_FILTER_IRQ When a TX message is rejected, it will be

skipped by the MH. When the Header

descriptor is in a TX FIFO Queue, the next

message in the FIFO is used instead. An

acknowledge is sent to the TX descriptor

with the status rejected. Regarding TX

Priority Queue, the corresponding slot is

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

219 | 306

Error source Interrupt MH behavior

disabled. The MH keeps running all other TX

FIFO Queues or slots defined as valid.

DMA channel

interface mixed

up

Wrong data sent or

received to DMA

channel interface

detected by the

DMA

DMA_CH_ERR As such issue would mean data are mixed-up

between channels, there is no way to

recover. The MH finishes all pending data

transfers and then stops with MH_STS.BUSY

= 0. The system is notified through the

DMA_CH_ERR interrupt line. There is no

status flag assigned to such interrupt as the

DMA channel being faulty cannot be

identified.

Parity error on RX

message data

A bit flip is

detected on data

from the RX_MSG

to the AXI system

bus interface

DP_PARITY_ERR If such issue occurs while receiving data, the

RX message would be discarded. No

acknowledge data is sent. An interrupt

DP_PARITY_ERR is triggered. The

SFTY_INT_STS.DP_RX_PARITY_ERR bit status

register is set to 1. As the RX message

would be aborted, the RX_ABORT_IRQ

interrupt would also be set. The MH keeps

going with new messages.

Parity error on TX

message data

A bit flip is

detected on

payload data from

the AXI system bus

interface to the

TX_MSG

DP_PARITY_ERR If such issue occurs while transmitting data,

the TX message would be aborted. An

interrupt DP_PARITY_ERR would be

triggered. The

SFTY_INT_STS.DP_TX_PARITY_ERR bit status

register is set to 1. The TX_ABORT_IRQ

interrupt is set.

Parity error on RX

message

acknowledge

data

A bit flip is

detected on data

from the RX_MSG

to the AXI system

bus interface

DP_PARITY_ERR If such issue occurs on the acknowledge

data, the RX message would be discarded.

No acknowledge data is sent. An interrupt

DP_PARITY_ERR is triggered. The

SFTY_INT_STS.ACK_RX_PARITY_ERR bit

status register is set to 1. The MH keeps

going with new messages.

Parity error on TX

message

acknowledge

data

A bit flip is

detected on

payload data from

the AXI system bus

interface to the

TX_MSG

DP_PARITY_ERR If such issue occurs while acknowledging

the TX message. An interrupt

DP_PARITY_ERR is triggered. The

SFTY_INT_STS.ACK_TX_PARITY_ERR bit

status register is set to 1. The SW can

identify such issue reading the report status

of that TX descriptor.

RX message MH_CTRL.START NONE The MH does not accept RX message data

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

220 | 306

Error source Interrupt MH behavior

received while

MH not started

bit wrongly set to

1

from the PRT. As the PRT cannot sent data

to the MH, a data overflow on the PRT will

occur leading to an interrupt.

PRT

RX data path

overflow

DO code word

received from PRT.

. Several issues

could lead to such

issue, peak latency

preventing write

accesses in time or

RX path being

stopped or …

NA The RX message is discarded. The already

used RX descriptor are reused for the next

message. Then, no status is sent back to the

Header Descriptor in S_MEM.

RX message on

CAN bus not

successful

ABORT code word

received from PRT.

Invalid CAN

message detected

on CAN bus

NA This is normal behavior. The RX message is

discarded. The already used RX descriptors

are allocated for the next message. No

acknowledge data is sent back to the

S_MEM

TX data path

underrun

DU code word

received from PRT.

TX message data

not provided in

time

NA The current TX message, selected and

started on the MH side, is aborted but the

PRT keeps going with its current frame and

will generated a wrong CRC to invalidate the

frame at the receiver side. All data transfers

from S_MEM is aborted. The issue may be

the result of a peak latency. The TX message

is still valid and will be part of the next TX-

Scan. The MH can restart to transmit the

same message according to the restart

counter setting. The PRT is triggered an

interrupt to the system when such code

word is transmitted to the MH. It is essential

to understand that the MH will still be active

and fully functional. There is no message

loss when such issue occurs

TX message on

CAN bus not

successful

RESTART code

word received

from PRT

NA The current TX message, selected and

started on the MH side, is aborted. All data

transfers from S_MEM is aborted. The

current TX message is still valid and will be

part of the next TX-Scan. The MH can restart

to transmit the same message according to

the restart counter setting or use another

one with highest priority .

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

221 | 306

Error source Interrupt MH behavior

TX message

header invalid

HFI code word

received from PRT

NA The current TX message is discarded, and a

data acknowledge is sent back to the Header

Descriptor in S_MEM. The report status of

the TX descriptor is updated with the issue.

If the TX message was in a TX FIFO Queue,

the MH keeps running and skips this TX

message to fetch the next one. In case of a

TX Priority Queue slot, the slot is set as

done but not sent (see report status in TX

descriptor)

Unexpected Start

Of Sequence

(USOS) at the

TX_MSG interface

When PRT detects

USOS, it stops

CAN protocol

operation and sets

ENABLE=0

STOP_IRQ In case such code word is received, the MH

and the PRT are no more synchronized. The

MH finishes its current transfers and stops.

The STOP_IRQ interrupt is set to notify MH

is no more active. In such scenario the only

action would be to reset the MH and PRT to

recover.

PRT entered CAN

protocol’s Bus-

Off state

PRT stops CAN

protocol operation

and sets

ENABLE=0

STOP_IRQ MH finishes all pending data transfers and

then stops (put on hold). All FSM in the MH

go to idle. The STOP_IRQ interrupt is set to

notify MH is no more active. A write to the

MH_CTRL.START bit register allows the SW

to restart everything at the point it was

stopped, if required.

PRT stopped by

SW

PRT stops CAN

protocol operation

and sets

ENABLE=0

STOP_IRQ

PRT TX_MSG

interface not

responding

PRT is having a

deadlock and

cannot answer to

MH request or

receive data

DP_TO_ERR When the timeout assigned to the TX_MSG

interface fires, the MH finishes all pending

data transfers and then stops with

MH_STS.BUSY = 0. The DP_TO_ERR interrupt

is triggered to the system, with the

ERR_INT_STS.DP_TX_TO_ERR bit status set

to 1

PRT RX_MSG

interface not

responding

PRT is having a

deadlock and

cannot send data

to MH

DP_TO_ERR When the timeout assigned to the RX_MSG

interface fires, the MH finishes all pending

data transfers and then stops with

MH_STS.BUSY = 0. The DP_TO_ERR interrupt

is triggered to the system with the

ERR_INT_STS.DP_RX_TO_ERR bit status set

to 1

LOCAL MEMORY (L_MEM)

Local memory

safety error while

The L_MEM is

providing a safety

MEM_SFTY_ERR

As the corrupted data word is corrected, the

RX filtering can be done on the current RX

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

222 | 306

Error source Interrupt MH behavior

reading RX filter

element.

Corrupted data

has been

corrected

error on

MEM_SFTY_CE

input signal while

reading a data

message. The MH keeps running and will be

able to receive new messages. The interrupt

MEM_SFTY_ERR is triggered to the system

with the SFTY_INT_STS.MEM_SFTY_CE bit

status register set to 1. It is essential for

such issue that there is no error response on

the memory interface while reading the

corrected data.

Local memory

safety error while

reading TX

descriptor.

Corrupted data

has been

corrected

The L_MEM is

providing a safety

error on

MEM_SFTY_CE

input signal while

reading a data

MEM_SFTY_ERR

As the TX descriptor selected to be the next

message candidate is corrupted but

corrected, the related TX FIFO Queue or the

TX Priority Queue slot will run as normal.

The TX-Scan is reading a corrected TX

descriptor and will complete. The interrupt

MEM_SFTY_ERR is triggered to the system,

with the SFTY_INT_STS.MEM_SFTY_CE bit

status register set to 1. It is essential for

such issue that there is no error response on

the memory interface while reading the

corrected data.

Local memory

safety error while

reading RX filter

element.

Corrupted data is

not corrected

The L_MEM is

providing a safety

error on

MEM_SFTY_UE

input signal while

reading a data with

SLVERR response

MEM_SFTY_ERR

As no more filtering can be done on the

current RX message, it is discarded. As it is

not possible to keep going with a corrupted

RX filter element, the MH stops. The

interrupt MEM_SFTY_ERR is triggered to the

system with the

SFTY_INT_STS.MEM_SFTY_UE bit status

register set to 1. The MH finishes all pending

data transfers and then stops with

MH_STS.BUSY = 0. It is essential for such

issue, to have the memory interface

reporting a SLVERR when reading the

corrupted data.

Local memory

safety error while

reading TX

descriptor.

Corrupted data is

not corrected

The L_MEM is

providing a safety

error on

MEM_SFTY_UE

input signal while

reading a data with

a SLVERR

response

MEM_SFTY_ERR

As it is not possible to keep going with a

corrupted TX descriptor, the MH stops. The

interrupt MEM_SFTY_ERR is triggered to the

system if such issue occurs with the

SFTY_INT_STS.MEM_SFTY_UE bit status

register set to 1. The MH finishes all pending

data transfers and then stops with

MH_STS.BUSY = 0. It is essential for such

issue, to have the memory interface

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

223 | 306

Error source Interrupt MH behavior

reporting a SLVERR when reading the

corrupted data.

Error response

received on local

memory write

access. A safety

issue is not

considered here

The L_MEM is

providing a

DECERR/SLVERR

error response on

BRESP[1:0] for a

write access

RESP_ERR[0] The TX descriptor written to the L_MEM is

not valid. In such cases as the L_MEM

cannot be trusted anymore, the MH stops.

The MH finishes all pending data transfers

and then stops with the MH_STS.BUSY = 0.

The RESP_ERR[0] interrupt is triggered to

the system. To identify the issue the

BRESP[1:0] and the ID of the transaction are

logged in the AXI_ERR_INFO.MEM_ID[1:0]

and AXI_ERR_INFO.MEM_RESP[1:0] bit

status register.

Error response

received on local

memory read

access. A safety

issue is not

considered here

The L_MEM is

providing a

DECERR/SLVERR

error response on

RRESP[1:0] for a

read access

RESP_ERR[1] The TX descriptor or RX Filter element read

from the L_MEM is not valid. In such cases

as the L_MEM cannot be trusted anymore,

the MH stops. The MH finishes all pending

data transfers and stops with the

MH_STS.BUSY = 0. The RESP_ERR[0]

interrupt is triggered to the system. To

identify the issue the RRESP[1:0] and the ID

of the transaction are logged in the

AXI_ERR_INFO.MEM_ID[1:0] and

AXI_ERR_INFO.MEM_RESP[1:0] bit status

register.

A read from the

L_MEM cannot

complete

The MH does not

complete a read

within a defined

time frame

MEM_TO_ERR When the timeout assigned to the L_MEM

AXI read channel fires, the MH finishes all

pending data transfers and then stops with

MH_STS.BUSY = 0. The MEM_TO_ERR

interrupt is triggered to the system and the

SFTY_INT_STS.MEM_AXI_RD_TO_ERR bit

status is set to 1

A write to the

L_MEM cannot

complete

The MH does not

complete a write

within a defined

time frame

MEM_TO_ERR When the timeout assigned to the L_MEM

AXI write channel fires, the MH finishes all

pending data transfers and then stops with

MH_STS.BUSY = 0. The MEM_TO_ERR

interrupt is triggered to the system and the

SFTY_INT_STS.MEM_AXI_WR_TO_ERR bit

status is set to 1

SYSTEM

Address decoding

error on DMA

Error response

from AXI system

RESP_ERR[0] When the error is detected on the RX

message data or acknowledge data being

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

224 | 306

Error source Interrupt MH behavior

write channels bus interface,

DECERR received

on BRESP[1:0] for

write access

written, the interrupt RESP_ERR[0] interrupt

is sent to the system. As the S_MEM is not

reliable, the MH stops. The MH finishes all

pending data transfers and stops with the

MH_STS.BUSY = 0. To identify the issue the

BRESP[1:0] and the ID of the transaction are

logged in the AXI_ERR_INFO.DMA_ID[1:0]

and AXI_ERR_INFO.DMA_RESP[1:0] bit

status register.

Address decoding

error on DMA

read channels

Error response

from AXI system

bus interface,

DECERR received

on RRESP[1:0] for

read access

RESP_ERR[1] When the error is detected on the TX

message data, RX or TX descriptors, the

interrupt RESP_ERR[1] is sent to the system.

As the S_MEM is not reliable, the MH stops.

The MH finishes all pending data transfers

and stops with the MH_STS.BUSY = 0. To

identify the issue the RRESP[1:0] and the ID

of the transaction are logged in the

AXI_ERR_INFO.DMA_ID[1:0] and

AXI_ERR_INFO.DMA_RESP[1:0] bit status

register.

System memory

CRC error or

Access to wrong

slave on DMA

write channel

Error response

from AXI system

bus interface,

SLVERR received

on BRESP[1:0] for

write access

RESP_ERR[0] There is no way to identify the exact error

source, either a CRC error or a wrong slave

access.

See “Address decoding error on DMA write

channels” description in current table

System memory

CRC error or

Access to wrong

slave on DMA

read channel

Error response

from AXI system

bus interface,

SLVERR received

on RRESP[1:0] for

read access

RESP_ERR[1] There is no way to identify the exact source,

either a CRC error or a wrong slave access.

See “Address decoding error on DMA read

channels” description in current table

A read from the

S_MEM cannot

complete

The MH does not

complete a read

within a defined

time frame

DMA_TO_ERR When the timeout assigned to the S_MEM

AXI read channel fires, the MH finishes all

pending data transfers and then stops with

MH_STS.BUSY = 0. The DMA_TO_ERR

interrupt is triggered to the system, with the

SFTY_INT_STS.DMA_AXI_RD_TO_ERR bit

status set to 1

A write to the

S_MEM cannot

complete

The MH does not

complete a write

within a defined

DMA_TO_ERR When the timeout assigned to the S_MEM

AXI write channel fires, the MH finishes all

pending data transfers and then stops with

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

225 | 306

Error source Interrupt MH behavior

time frame MH_STS.BUSY = 0. The DMA_TO_ERR

interrupt is triggered to the system with the

SFTY_INT_STS.DMA_AXI_WR_TO_ERR bit

status set to 1

1.4.5.30 Interrupts

Interrupt Description

TX_FQ_IRQ[7:0] When considering TX FIFO Queues, there is the option, thanks to the IRQ bit field

in TX Descriptor, to trigger an interrupt to the system, when a TX message is sent

successfully or skipped. This interrupt can only be declared in a TX Header

Descriptor (HD=1). When a TX descriptor has HD=0 and IRQ=1, no interrupt is

generated.

A dedicated interrupt signal TX_FQ_IRQ[n] is provided per TX FIFO queue n (0 <=

n <=7). When a TX Header Descriptor is mentioning an interrupt (IRQ bit set to 1)

and the message is successfully sent or skipped, the DESC_MESSAGE_HANDLER

identifies the TX FIFO queue source number of that descriptor and triggers the

relative line of the interrupt bus signal. The interrupt will be effective only when

the acknowledge data of that descriptor is fully written in S_MEM.

It is then possible to define for a TX FIFO Queue n, with a fix number of

messages, the interrupt TX_FQ_IRQ[n] only to the last Header Descriptor. Doing

so, this approach will limit the number of interrupts to the system.

The main purpose of the TX FIFO Queue is to append on the fly new messages. A

race condition may occur between the SW and the Message Handler regarding

the definition of valid TX message in that queue. In case a TX FIFO Queue n does

not provide a valid TX descriptor, the MH notifies the SW with the TX_FQ_IRQ[n]

that the TX FIFO Queue n is on hold, despite being active.

The TX_FQ_INT_STS register provides the relevant information to detect the root

cause.

As a summary three different source of events can trig those interrupts:

• This interrupt is triggered when the IRQ bit field in TX Header Descriptor is
set to 1 and the TX message is sent successfully. The
TX_FQ_INT_STS.SENT[n] bit register is set to 1 for the TX FIFO Queue n
and the bit field STS[3:0] in the TX descriptor is set to 0’b0001

• This interrupt trigs when the TX message is skipped. The
TX_FQ_INT_STS.SENT[n] bit register is set to 1 for the TX FIFO Queue n
and the bit field STS[3:0] in the TX descriptor is set to 0’b0010 or 0’b0011

• The TX FIFO Queue n execution is stopped due to the fetch of an invalid
TX descriptor in this queue (no more TX message defined, and no END bit

MH_1116

MH_1117

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

226 | 306

Interrupt Description

set to 1 for the last TX message). The TX_FQ_INT_STS.UNVALID[n] bit
register is set to 1 for the TX FIFO Queue n

RX_FQ_IRQ[7:0] When considering RX FIFO Queues there is the option, thanks to the IRQ bit field

in RX descriptor, to trigger an interrupt to the system when an RX message is

received successfully. The interrupt bus signal RX_FQ_IRQ[n] provides an

interrupt line for the RX FIFO queue n (0 <= n <=7).

When the DESC_MESSAGE_HANDLER fetches an RX descriptor for a given RX

message and identifies an IRQ bit set to 1 in one of them, it stores this

information. Once the RX message is received successfully and a IRQ bit set has

been detected in one RX descriptor, an interrupt is triggered. This interrupt is

triggered only when the acknowledge data (written in the Header Descriptor) is

fully written in the S_MEM.

As a summary there are two options to define this interrupt bit in RX descriptors:

• In case the SW requires an interrupt per RX message, the IRQ bit in all RX
descriptors must be set to 1. This setting is valid for Normal and
Continuous mode with the same effect.

• The SW can set the IRQ bit in a regular interval along a RX FIFO Queue,
avoiding interrupts at every RX message. Only the RX message covering
the RX descriptor having this IRQ bit set will trigger an interrupt. In
Continuous mode, it is then possible to set an interrupt every two, three or
N messages. In Normal mode, the interrupt could be defined every two,
three or N RX descriptors According to the RX message size, several RX
descriptors will be used and so could trig the interrupt. It is important to
note that RX messages are received with various bit rate, thus the interrupt
time interval will not be identical.

A race condition may occur between the SW and the Message Handler regarding

the definition of valid RX descriptor in a queue. In case a RX FIFO Queue n does

not provide a valid RX descriptor in time, the interrupt notifies the SW with the

RX_FQ_IRQ[n] interrupt that the RX FIFO Queue n is on hold despite being active.

The RX_FQ_INT_STS register provides the related information to identify the root

cause.

As a summary two different source of events can trig those interrupts:

• This interrupt is triggered when the IRQ bit field in a RX Descriptor is set to
1 and the RX message is received successfully. The
RX_FQ_INT_STS.RECEIVED[n] bit register is set to 1 for the RX FIFO
Queue n and the bit field STS[3:0] in the RX descriptor is set to 0’b0001

• The RX FIFO Queue n execution is stopped due to the fetch of an invalid
RX descriptor in this queue. The RX_FQ_INT_STS.UNVALID[n] bit
register is set to 1 for the TX FIFO Queue n

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

227 | 306

Interrupt Description

TX_PQ_IRQ A single TX_PQ_IRQ interrupt is assigned to all TX Priority Queue slots. Any TX

Priority Queue slot can trigger an interrupt (IRQ = 1) when the relative TX

message is successfully sent or skipped. Any TX Header Descriptor having the IRQ

bit set and used by the TX Priority Queue trigs this interrupt line. When a new TX

message is defined in a TX Priority Queue slot, the TX descriptor used to define

this message must be valid.

When the message is sent, the slot is set to inactive and nothing else can occur.

Whereas the TX FIFO Queue, which is processing up to the point a TX descriptor

is invalid, the TX Priority Queue slot must not fetch any invalid descriptor. To

protect the execution of TX message and to have a common TX Queue

management, the TX priority Queue can also report invalid descriptor.

The SW need to look at the interrupt status register TX_PQ_INT_STS0 and

TX_PQ_INT_STS1 to identify which slot has generated the interrupt and for which

reason.

As a summary three different source of events can trig this interrupt:

• This interrupt is triggered when the IRQ bit field in TX Header Descriptor is
set to 1 and the TX message is sent successfully. The
TX_PQ_INT_STS0.SENT[n] bit register is set to 1 for the TX Priority
Queue slot n and the bit field STS[3:0] in the TX descriptor is set to
0’b0001

• This interrupt is triggered when the TX message is skipped. The
TX_PQ_INT_STS0.SENT[n] bit register is set to 1 for the TX Priority
Queue slot n and the bit field STS[3:0] in the TX descriptor is set to
0’b0010 or 0’b0011

• The TX Priority Queue slot n execution is stopped due to the fetch of an
invalid TX descriptor in this queue (TX descriptor is not valid). The
TX_PQ_INT_STS1.UNVALID[n] bit register is set to 1 for the TX Priority
Queue slot n

STATS_IRQ Four Statistic counters are used to monitor successful and unsuccessful RX and

TX messages. As soon as one of those counters overflows the STATS_IRQ is

triggers to the system, refer to the RX and TX Statistics chapter for more details.

When looking at the STATS_INT_STS register, the SW can identify which counter

has reached its maximum value:

• When the number of unsuccessful RX message received has reached the
maximum counter value, the STATS_INT_STS.RX_UNSUCC is set to 1

• When the number of successful RX message received has reached the
maximum counter value, the STATS_INT_STS.RX_SUCC is set to 1

• When the number of unsuccessful TX message received has reached the
maximum counter value, the STATS_INT_STS.TX_UNSUCC is set to 1

• When the number of successful TX message received has reached the
maximum counter value, the STATS_INT_STS.TX_SUCC is set to 1

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

228 | 306

Interrupt Description

STOP_IRQ When the PRT is stop (ENABLE signal goes from high to low), the MH finishes its
current tasks. It puts all active RX/TX FIFO Queues on hold and discard all active
TX Priority Queue slots. Once done, the MH notifies such state by triggering the
STOP_IRQ interrupt.
The interrupt STOP_IRQ is raised under the following conditions only:

• TX_FQ_STS0 = 0x0000 and RX_FQ_STS0 = 0x0000 and TX_PQ_STS0 =
0x00000000

• TX_FQ_STS0 = 0xXYXY and RX_FQ_STS0 = 0xWVWV and
TX_PQ_STS0 = 0x00000000, where XY defined the active and on hold TX
FIFO Queues and WV the active and on hold RX FIFO Queues

RX_FILTER_IRQ In order to track RX filtering results, an interrupt can be defined when a match is

detected on any defined RX filter element. The RX_FILTER_IRQ can only be

triggered if the IRQ bit in the RX filter element is set to 1 AND there is a match.

When a match is detected, the FM bit (set in RX message header) is set to 1 and

the filter element index is defined in the FIDX[7:0] bit field (set in the RX

message header).

Note: The BLK bit field in the RX Filter element is a side band information and is

not considered for the interrupt generation.

TX_FILTER_IRQ The interrupt is triggered when the TX filter is enabled, and a TX message is

rejected. Despite being rejected, the TX descriptor used to define the TX message

is acknowledged. To identify the TX descriptor allocated to the TX message

rejected, the STS[3:0] bit field in the TX descriptor is set to 0’b0100.

The TX_FILTER_ERR_INFO register provides the relevant information to identify

which TX FIFO Queue or TX Priority Queue slot is impacted.

TX_ABORT_IRQ This interrupt line is only triggered when the MH needs to abort a TX message

being sent to the PRT. This interrupt does not have any status flags, as it will

always be linked to functional or safety errors. Thus, another interrupt will

provide the require information related to the issue.

Several source of events can lead to this interrupt:

• TX address pointer parity error (refer to AP_PARITY_ERR interrupt)

• Timeout on S_MEM, L_MEM or PRT interface (refer to MEM_TO_ERR,
DMA_TO_ERR or DP_TO_ERR interrupt)

• DMA channel routing error (refer to DMA_CH_ERR interrupt)

• A TX_MSG sequence error (refer to DP_SEQ_ERR interrupt)

• A DMA AXI or MEM AXI error response (refer to RESP_ERR interrupt)

• An uncorrectable error detected on the L_MEM (refer to MEM_SFTY_ERR
interrupt)

• A TX data parity error (refer to DP_PARITY_ERR interrupt)

Aborting a TX FIFO Queue or a TX Priority Queue slot does not set this interrupt

as no TX message abort is expected to occur (the MH will complete the current

TX message before aborting the TX FIFO Queue).

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

229 | 306

Interrupt Description

RX_ABORT_IRQ This interrupt line is triggered when the MH needs to abort a RX message

received from the PRT. This interrupt does not have any status flags, as it will

always be linked to functional or safety errors. Thus, another interrupt will

provide the require information related to the issue.

Several source of events can lead to this interrupt:

• An RX message is about to be sent to a disabled RX FIFO Queue.

• An RX message is in progress and the MH receives a new RX message at
the same time.

• RX address pointer parity error (refer to AP_PARITY_ERR interrupt)

• Timeout on S_MEM, L_MEM or PRT interface (refer to MEM_TO_ERR,
DMA_TO_ERR or DP_TO_ERR interrupt)

• DMA channel routing error (refer to DMA_CH_ERR interrupt)

• A RX_MSG sequence error (refer to DP_SEQ_ERR interrupt)

• A DMA AXI or MEM AXI error response (refer to RESP_ERR interrupt)

• An uncorrectable error detected on the L_MEM (refer to MEM_SFTY_ERR
interrupt)

• A RX data parity error (refer to DP_PARITY_ERR interrupt)

• A RX descriptor error (refer to DESC_ERR interrupt)

• An overflow on RX DMA FIFO or on the RX descriptor acknowledge path
(refer to the DP_DO_ERR interrupt)

Aborting a RX FIFO Queue will never set this interrupt, as the MH will complete

its current reception before this action.

RX_FILTER_ERR This interrupt line is triggered when the RX filter has not finished in time, to

define the RX FIFO Queue number, before the reception of a new RX message. It

provides information to the SW about large RX filtering time. Refer to the RX

Filter chapter for detailed description. There is no status flag related to this

interrupt, as the second source of event, defined below, is a programming issue

and should never occur.

Two different sources of events can trig this interrupt:

• RX filtering not finished before a new RX frame

• RX FIFO Queue to receive RX frame not running

MEM_SFTY_ERR Safety error detected at the L_MEM interface. In fact, this interrupt is triggered

when either the MEM_SFTY_CE or MEM_SFTY_UE input signal is active.

To identify the root cause of such interrupt, refer to the SFTY_INT_STS register

Two different sources of events can trig this interrupt:

• The MEM_SFTY_UE input signal, when set, to indicate an uncorrectable
error from the L_MEM when reading (this signal must be generated by the
L_MEM memory controller). The SFTY_INT_STS. MEM_SFTY_UE bit
register is set to 1 in this case

• The MEM_SFTY_CE input signal, when set, to indicate a correctable error
from the L_MEM when reading (this signal must be generated by the

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

230 | 306

Interrupt Description

L_MEM memory controller). The SFTY_INT_STS. MEM_SFTY_CE bit
register is set to 1 in this case

REG_CRC_ERR CRC error detected on the register bank. This interrupt is triggered after a few

cycles if the CRC written in the CRC_REG.VAL[31:0], prior writing 1 to the

CRC_CTRL.START bit, is not matching the one computed in hardware. Such

interrupt event does not trig any actions in the MH. Therefore, it is a SW task to

do the appropriate actions to stop the MH.

DESC_ERR CRC error detected on RX/TX descriptor or unexpected RX/TX descriptor

received. Status flags allow SW to identify the root cause of such interrupt, see

SFTY_INT_STS register.

Several source issues could lead to this interrupt:

• When the SFTY_INT_STS.RX_DESC_CRC_ERR is set to 1, a RX
descriptor is received and is having a CRC error

• When the SFTY_INT_STS.RX_DESC_REQ_ERR is set to 1, a RX
descriptor is received and is not compliant to the one requested (wrong RX
FIFO Queue, wrong instance number, wrong position in the queue, …)

• When the SFTY_INT_STS.TX_DESC_CRC_ERR is set to 1, a TX
descriptor is received and is having a CRC error

• When the SFTY_INT_STS.TX_DESC_REQ_ERR is set to 1, a TX
descriptor is received and is not compliant to the one requested (wrong TX
FIFO Queue, wrong instance number, wrong position in the queue, wrong
TX Priority Queue slot…)

The DESC_ERR_INFO0 and DESC_ERR_INFO1 registers provide a detailed

description of the faulty RX/TX descriptor. Only the first RX/TX descriptor error

will lead to an update of those registers, in case several ones occur. To capture

the next descriptor error information, the SW must clear the interrupt source.

AP_PARITY_ERR Address pointers used to manage TX FIFO Queues, RX FIFO Queues and TX

Priority Queue are protected using parity bit (1bit per byte). Any issue detected

trigs this interrupt. The parity bits are checked only when the address pointer is

used for S_MEM accesses. Status flags allow SW to identify the root cause, see

SFTY_INT_STS register.

Several source issues could lead to this interrupt:

• When the SFTY_INT_STS.AP_RX_PARITY_ERR is set to 1, an address
pointer used to manage the RX path is having a parity error

• When the SFTY_INT_STS.AP_TX_PARITY_ERR is set to 1, an address
pointer used to manage the TX path is having a parity error

DP_PARITY_ERR Parity error detected on RX message data received from PRT to AXI system bus or

TX payload data transmitted from AXI system bus to PRT. Any issue detected trigs

this interrupt. Status flags allow SW to identify the root cause, see SFTY_INT_STS

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

231 | 306

Interrupt Description

register.

Several source issues could lead to this interrupt:

• When the SFTY_INT_STS.DP_RX_PARITY_ERR is set to 1, a RX
message data is having a parity error

• When the SFTY_INT_STS.DP_TX_PARITY_ERR is set to 1, a TX
message data is having a parity error

DP_SEQ_ERR The RX_MSG or TX_MSG interface used to synchronize the MH and PRT data

exchange is not functional. A wrong PRT or MH behavior could lead to this issue.

A problem on the logic managing the clock domain crossing on RX_MSG or

TX_MSG interface may be one of the source issues. Status flags are available to

identify the faulty interface, see ERR_INT_STS register.

Several source issues could lead to this interrupt:

• When the ERR_INT_STS.DP_RX_SEQ_ERR is set to 1, an issue is
detected on the RX_MSG interface

• When the ERR_INT_STS.DP_TX_SEQ_ERR is set to 1, an issue is
detected on the TX_MSG interface

DP_DO_ERR An overflow is detected on the RX data path or while acknowledging a RX/TX

descriptor. Some status flags are provided to identify the interrupt source, see

ERR_INT_STS register

Several source issue could trig this interrupt:

• When the ERR_INT_STS.DP_RX_FIFO_DO_ERR is set to 1, an RX DMA
FIFO overflow is detected. Several reasons could explain such issue: a
very high system latency (over the expected limit considered for the MH), a
system memory no more accessible and a wrong MH behavior.

• When the ERR_INT_STS.DP_RX_ACK_DO_ERR is set to 1, an ACK
DMA FIFO overflow is detected. Such issue occurs when the
acknowledgment of an RX descriptor is not possible due to some pending
ones. A system memory not accessible or a wrong MH behavior (DMA
controller not functional, deadlock on RX/TX acknowledge path) could
explain such issue.

• When the ERR_INT_STS.DP_TX_ACK_DO_ERR is set to 1, an ACK DMA
FIFO overflow is detected. Such issue occurs when the acknowledgment of
a TX descriptor is not possible due to some pending ones. A system
memory not accessible or a wrong MH behavior (DMA controller not
functional, deadlock on RX/TX acknowledge path) could explain such issue

.

DP_TO_ERR When the PRT is not responding after a certain amount of time, either on RX or

on TX path, the DP_TO_ERR interrupt is triggered. The counter on RX_MSG or

TX_MSG interface starts with the Start Of Frame and stop when receiving the

timestamp. The timeout value is programmable by SW, refer to the Programming

Guidelines chapter for more details. Some status flags provide the interrupt

source, see SFTY_INT_STS register.

Several source issue could trig this interrupt:

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

232 | 306

Interrupt Description

• When the SFTY_INT_STS.DP_PRT_RX_TO_ERR is set to 1, the timeout
value defined on the RX_MSG interface is over. The PRT or MH may be
locked, preventing data reception

• When the SFTY_INT_STS.DP_PRT_TX_TO_ERR is set to 1, the timeout
value defined on the TX_MSG interface is over. The PRT or MH may be
locked, preventing data transmission

.

DMA_TO_ERR When the S_MEM is not responding after a defined time interval, the

DMA_TO_ERR is triggered. The timeout value is programmable by SW, refer to the

Programming Guidelines for more details. Some status flags provide the interrupt

source, see SFTY_INT_STS register.

Several source issue could trig this interrupt:

• When the SFTY_INT_STS.DMA_AXI_RD_TO_ERR is set to 1, the timeout
value defined on the DMA AXI read channel interface is over. A system
memory no more accessible or a DMA controller in deadlock could explain
such issue.

• When the SFTY_INT_STS.DMA_AXI_WR_TO_ERR is set to 1, the
timeout value defined on the DMA AXI write channel interface is over. A
system memory no more accessible or a DMA controller in deadlock could
explain such issue.

MEM_TO_ERR When the L_MEM is not responding after a defined time interval the MEM_TO_ERR

is triggered. The timeout value is programmable by SW, refer to the Programming

Guidelines for more details. Some status flags are provided to identify the

interrupt source, see SFTY_INT_STS register.

Several source issue could trig this interrupt:

• When the SFTY_INT_STS.MEM_AXI_RD_TO_ERR is set to 1, the timeout
value defined on the MEM AXI read channel interface is over. A local
memory no more accessible or a memory controller in deadlock could
explain such issue.

• When the SFTY_INT_STS.MEM_AXI_WR_TO_ERR is set to 1, the
timeout value defined on the MEM AXI write channel interface is over. A
local memory no more accessible or a memory controller in deadlock could
explain such issue.

DMA_CH_ERR Data received or sent are not routed to or from the right DMA channels. Such

issue will lead to data corruption and wrong MH behavior. There are no status

flags to identify the source channel being faulty.

RESP_ERR[1:0] Any error response from the DMA AXI and MEM AXI interfaces can lead to a

RESP_ERR[1:0] interrupts. Some status flags provide the interrupt source, see

SFTY_INT_STS register.

Several source issue could trig those interrupts:

• When the RESP_ERR[0] interrupt is set, a write access error is detected
on either the DMA_AXI or MEM_AXI write channel.

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

233 | 306

Interrupt Description

• When the RESP_ERR[1] interrupt is set, a read access error is detected on
either the DMA_AXI or MEM_AXI read channel.

The AXI_ERR_INFO register provides a detailed description of the faulty AXI

interface, refer to the AXI_ERR_INFO.MEM_RESP[1:0] or

AXI_ERR_INFO.DMA_RESP[1:0] bit field to determine which one (must be

different from 0’b00).

The traffic getting the error response is defined when looking at the

AXI_ERR_INFO.MEM_ID[1:0] (if AXI_ERR_INFO.MEM_RESP[1:0] is different from

0’b00) or AXI_ERR_INFO.DMA_ID[1:0] bit field (if AXI_ERR_INFO.DMA_RESP[1:0]

is different from 0’b00).

In case several response errors occur on the same interface, only the AXI ID of

the last one is captured.

1.4.5.31 Clock and Reset

There is only one clock CLK to drive the whole core logic.

A clock CLK _AXI is used at the host interface, this clock is synchronous to CLK clock.

The only reset available is the RESET_N signal, it is asynchronously asserted (set to low) and

synchronously de-asserted.

To lower power consumption, the MH can have its core clock CLK disabled. Registers can still be

programmed through the host interface (CLK_AXI clock still active)

The CLK and CLK_AXI are used only with the rising edge, this means they can be defined with some

spread to lower EMI.

As the MH uses only the rising edge of the CLK_AXI and CLK, the duration of the clock's high pulse

may vary between 10% and 90% of the clock period during operation.

The PRT signalizes via ENABLE whether it is active and requires message handling or not.

• When this signal is going low, the MH will stop its current activities. This means the RX/TX FIFO

queues and TX Priority Queue are put on hold as well as all the relevant traffic from and to the

S_MEM. Once it is done, the bit status MH_STS.BUSY is set to 0 and the CLK clock signal of the

MH can be stopped.

• When the ENABLE is already low and the MH_STS.BUSY bit status is set to 0, nothing prevents

the SW to switch off the CLK clock signal.

MH_1118

MH_1119

MH_1120

MH_1121

MH_1122

MH_1454

MH_1808

MH_2592

MH_1417

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

234 | 306

1.4.6 Application Information

This section describes some general information related to MH performances, flags to be look at and

cluster guidelines.

1.4.6.1 Queue Status Flags

The TX FIFO Queue status is defined according to the bit status in the TX_FQ_STS0 register, see table

below:

TX_FQ_STS0.

BUSY[n]

TX_FQ_STS0.

STOP[n]

Status for TX FIFO QUEUE n

(n € {0, 1, …, 31)

0 0 Inactive: The TX FIFO Queue can be programmed and started if enabled

0 1 na

1 0 Active and running: The TX FIFO Queue is enabled and has been started.

TX messages are sent whenever possible to the PRT

1 1 Active and on hold: When considering no functional or safety errors, this

status is reached when an invalid TX descriptor is fetched from S_MEM.

The TX Priority Queue slot n status is defined according to the bit status in the TX_PQ_STS0 register,

see table below:

TX_PQ_STS0.BUSY[n]
Status for TX PRIORITY QUEUE slot n

(n € {0, 1, …, 31)

0 Inactive: The TX Priority Queue slot n can be programmed and started if enabled

1 Active and running: The TX Priority Queue slot n is enabled and has been

started. TX message in the slot n can be transmitted whenever possible

Compared to the TX FIFO Queues, there is no STOP bits. Any errors related to a TX Priority Queue slot

execution sets the slot as inactive.

The RX FIFO Queue status is defined according to the bit status in the RX_FQ_STS0 register, see table

below:

RX_FQ_STS0.

BUSY[n]

RX_FQ_STS0.

STOP[n]

Status for RX FIFO QUEUE n

(n € {0, 1, …, 31)

0 0 Inactive: The RX FIFO Queue can be programmed and started if enabled

0 1 na

1 0 Active and running: The RX FIFO Queue is enabled and has been started.

RX messages can be received from the PRT

1 1 Active and on hold: When considering no functional or safety errors, this

MH_2892

MH_2891

MH_2888

MH_2887

MH_2893

MH_2894

MH_2904

MH_2895

MH_2896

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

235 | 306

RX_FQ_STS0.

BUSY[n]

RX_FQ_STS0.

STOP[n]

Status for RX FIFO QUEUE n

(n € {0, 1, …, 31)

status is reached when an invalid RX descriptor is fetched from S_MEM.

1.4.6.2 Cluster

The same L_MEM can be shared across several Message Handler, but several points need to be

highlighted. A trade-off needs to be found to ensure every MH will get enough time to complete their

RX filter process as well as their TX-Scan for a given L_MEM bandwidth.

• The worst scenario on RX path is defined when all MH in a cluster is receiving an RX message at

the same time. Therefore, it is essential to ensure the available bandwidth on the L_MEM is

able to support the RX filter process from all concurrent MH. Several measures can be taken to

lower the bandwidth for a given value: limit the number of RX filter elements and the number

of comparison (1 or 2) per filter element.

• The worst scenario on TX path is defined by all TX FIFO queues active for every MH as well as

new TX messages being added to all TX Priority Queue slots. As one message is added or sent

at a time for every MH, the impact of the TX-Scan may be limited but may play an important

role by generating more arbitration occurrences

• The read latency to access the L_MEM is a common factor for all MH and should be as low as

possible. This access time is driven the overall performances when in cluster mode

1.4.6.3 Performances

Several processing times have a direct impact on the overall MH performances, see sections below.

1.4.6.3.1 Core Clock Frequency

The minimum MH core clock frequency is driven by several parameters:

• The maximum number of RX filter elements to support

• The Classical CAN, CAN FD, and CAN XL bit rates (Arbitration and Data Phase)

• The L_MEM read latency

• The maximum number of TX FIFO Queues

• The maximum number of TX Priority Queue slots

To estimate the minimum core clock frequency to set, please refer to excel file [6]. One must keep in

mind that the computed value is a minimum. Other clock frequency constraints may require a higher

clock speed on the MH.

1.4.6.3.2 TX-Scan

MH_2600

MH_2601

MH_2611

MH_2612

MH_2898

MH_2899

MH_2900

MH_2613

MH_2614

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

236 | 306

The TX-Scan does compute the highest priority message over the TX FIFO queues and the TX Priority

Queue slots. The processing time is mainly link to the number of TX FIFO Queues active at the same

time as well as the number of TX Priority Queue slots being set active. The higher the number of slots

and TX FIFO queues active, the higher the bandwidth from the L_MEM. The sooner the result is known

the better the expected transmission order is. For more detail on TX-Scan refer to the TX-Scan

chapter.

1.4.6.3.3 RX Filter

As the RX filter elements are defined and read from the L_MEM, any RX message received will

generate many accesses. The number of RX filter elements and the number of comparisons per

element drive the bandwidth from the L_MEM and so the processing time. The higher the number of

filter elements the higher it takes to define if an RX message is accepted or rejected. Despite some

measures are in place to avoid discarding the current RX message, the SW would need to sort the non-

dispatched messages later on. For more detail on RX Filter refer to the RX Filter chapter.

The process of filtering is started as soon as the first RX message header data is received. When an RX

filter element expects an RX data word that is not already stored, the process stops and waits for the

RX data word. As the RX filter element are fetched linearly from the L_MEM, it is required to have

them organized in a specific way to optimize the filtering time. The Classical CAN with a low bit rate

does provide more margin to complete the RX filtering in time. The critical path is defined when

receiving CAN FD frame with no payload data.

As a general rule, it is recommended to defined RX filter elements in this order:

• First: CAN FD, assuming that only one comparison with the first message header word is required

• Second: CAN XL, assuming either one or two comparisons could be defined

• Third: Classical CAN , assuming that only one comparison with the first message header word is

require

Such RX filter elements organization will optimize the overall processing time.

1.4.6.3.4 RX/TX Descriptors Memory Organization

RX/TX descriptors are fetched from the S_MEM. The DMA controller is reading and writing data to the

S_MEM using burst length of various sizes. As soon as the address to read or write data is aligned on

burst length of 8, all the following burst transfer are using maximum burst length of 8. If the address

to fetch the RX/TX descriptor does cross a burst of 8 boundary, two read accesses are required.

TX path:

As the TX header descriptor is store locally in the MH there is no constraint regarding the access time

from the S_MEM. Nevertheless, several recommendations will help to increase access performances

and to limit power consumption:

• Align TX FIFO Queue start address on maximum burst length (8 word of 32bit)

• Align TX Priority Queue start address on maximum burst length (8 word of 32bit)

MH_2615

MH_2616

MH_996

MH_2619

MH_2620

MH_3028

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

237 | 306

• Define TX FIFO/Priority Queues (linked list of TX descriptors) in SRAM to leave more time for

payload data fetching. This is best practice to declare TX descriptor in SRAM whenever

possible

RX path:

RX descriptors fetches are driving the RX messages write to S_MEM. On top of it, if the RX filtering is

taking too much time, an RX DMA FIFO overflow may occur. Several recommendations will help to

increase access performances and to limit power consumption:

• Align RX FIFO Queue start address on maximum burst length (8 word of 32bit)

• Define RX FIFO Queues (linked list of RX descriptors) in SRAM to leave more time for RX

filtering. This is best practice to declare RX descriptor in SRAM whenever possible

1.4.6.3.5 Data Payload Buffer Memory Organization

Any accesses done from or to the S_MEM by the DMA will be fully optimized is the address is aligned

on the maximum burst length (8x32bit).

TX path:

• Align data container start address on maximum burst length (8 word of 32bit)

• Use data container size multiple of maximum burst length (8 word of 32bit)

RX path:

• Align data container start address on maximum burst length (8 word of 32bit), whatever the

mode (Normal or Continuous)

• Use data container size multiple of maximum burst length (8 word of 32bit)

1.4.6.3.6 High System Memory Latency

The maximum system memory latency is driven by the Classical CAN, CAN FD, and CAN XL bit rates

(Arbitration and Data Phase) and can be computed using the excel file [6].

If the latency time to get the first payload data burst is greater than the computed value, an underrun

will occur when starting to transmit a TX message to the PRT. As many DMA requests may occur to the

system bus at the same time, some critical scenarios could lead to delay the fetch of the first payload

data, providing underrun. If one of the TX descriptor DMA requests is pre-empting the access to the

first payload data for the current TX message, the delay would be larger than the one expected. As an

example, starting all TX FIFO Queues and TX Priority Queue slots at the same time may increase the

probability to have an underrun.

As a matter of fact, very high system latency may lead to underrun due to the high constraints on burst

accesses. The data underrun is a warning and won't affect the MH behavior and the order of the TX

messages. No TX message with underrun is dropped and it will still be considered in the next TX-Scan

run.

Nevertheless, here below are a list of recommendations to avoid and limit issues in a system with high

latency:

MH_3027

MH_2621

MH_2622

MH_2901

MH_2902

MH_2903

MH_3157

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

238 | 306

TX path:

Every TX descriptor and its payload data are fetched from the S_MEM. The payload data is only read

from the S_MEM when the TX message (defined by its TX descriptor) started to be transmitted on the

CAN bus (meaning the message has won the CAN bus arbitration). Thus, in case of very high latency

system, a data underrun may occur on the PRT. As a matter of fact, the critical path is defined by the

first bunch of payload data to be fetched. Several actions can be done to cope with high system

latency:

• Align data container start address on maximum burst length (8 word of 32bit)

• Align TX FIFO Queue start address on maximum burst length (8 word of 32bit)

• Align TX Priority Queue start address on maximum burst length (8 word of 32bit)

• Use data container size multiple of maximum burst length (8 word of 32bit)

• The usage of write outstanding transaction may not provide a significant improvement as the

write accesses are somehow sequential. Nevertheless, it is recommended to set it to the

maximum value, see AXI_PARAMS.AW_MAX_PEND[1:0] bit register

• Make use of read outstanding transaction (this is mandatory to avoid cases where DMA channel

are competing against each other to read the S_MEM). The maximum value is recommended,

see AXI_PARAMS.AR_MAX_PEND[1:0] bit register

• Define TX FIFO/Priority Queues (linked list of TX descriptors) in SRAM to leave more time for

payload data fetching. This is best practice to declare descriptor in SRAM whenever possible

RX path:

Every RX descriptor is fetched from the S_MEM. As for the TX path, the critical path is defined by the

first RX descriptor to be fetched, once the RX FIFO Queue number is defined by the RX filter. As soon

as the RX FIFO Queue is known, there is still some time required to read the corresponding RX

descriptor and to write the data payload to the S_MEM. To avoid any RX DMA FIFO overflow and to

limit the constraints at system level, the faster the RX descriptor is read from the S_MEM the faster

the payload data can be written to the S_MEM. Nevertheless, several actions can be done to cope with

high system latency:

• Align data container start address on maximum burst length (8 word of 32bit)

• Align RX FIFO Queue start address on maximum burst length (8 word of 32bit)

• Use data container size multiple of maximum burst length (8 word of 32bit)

• The usage of write outstanding transaction may not provide a significant improvement as the

write accesses are somehow sequential and the RX DMA FIFO sized to support high latency.

Nevertheless, it is recommended to set it to the maximum value, see

AXI_PARAMS.AW_MAX_PEND[1:0] bit register

• Make use of read outstanding transaction (this is mandatory to avoid cases where DMA channel

are competing against each other to read the S_MEM). The maximum value is recommended,

see AXI_PARAMS.AR_MAX_PEND[1:0] bit register

• Define RX FIFO Queues (linked list of RX descriptors) in SRAM to shorter the reaction time when

receiving an RX message. This is best practice to declare descriptor in SRAM whenever

possible

MH_2618

MH_2651

MH_2980

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

239 | 306

1.4.7 Programming Guidelines

Here below are the general procedures to program the MH.

1.4.7.1 Initial MH Start Procedure

Before starting any process, the SW driver must ensure the MH core clock is active

(MH_STS.CLOCK_ACTIVE = 1). It is assumed that the CLK_AXI clock to access to the MH register bank

is up and running.

Here is the procedure:

1) Configure the MH global registers:

• The MH_CFG.INST_NUM[2:0] bit field to indicate the X_CAN instance number

• The MH_SFTY_CFG and MH_SFTY_CTRL registers according to the safety measures to apply

• The AXI_ADD_EXT register if the DMA_AXI address bus interface is greater than 32bit

 The AXI_PARAMS register to define read and write outstanding

• The RX_STATISTICS and TX_STATISTICS registers must be set to 0 to ensure status of new

transmissions and receptions (successful or unsuccessful) are properly incremented in those

counters

2) Configure the RX Filter, see RX Filter Setting section

3) Configure the TX Filter, see TX Filter Setting section

4) Configure the RX FIFO Queues up to the start step, see RX FIFO Queue Initial Start section

5) Configure the TX FIFO Queues up to the start step, see TX FIFO Queue Initial Start section

6) Prepare TX Priority Queue, see TX Priority Queue Initialization section and define TX Priority Queue

slots (if any) up to the start step, see Starting TX Priority Queue Slot section

7) Unmask error and safety interrupts as well as functional interrupts which are relevant in the

interrupt controller

8) Compute the CRC of the registers protected by CRC and write the value to the CRC_REG register.

Then, write to the CRC_CTRL.START bit register to do the CRC checking. Any CRC issue triggers an

REG_CRC_ERR interrupt to the system

9) Write 0b1 to the MH_CTRL.START bit register to start the MH. As long as the PRT is not started

(MH_STS.ENABLE = 0) and there is no active RX/TX FIFO queue or TX Priority Queue slot

(MH_STS.BUSY = 0), the MH_CTRL.START bit can still be set back to 0

10) Start the RX FIFO Queues writing to the RX_FQ_CTRL0 register. Once a RX FIFO Queue starts, the

registers related to that queue and defined in 4) are write protected (excepted the RX_FQ_CTRL2

register). As soon as one RX FIFO Queue is active, the MH_CTRL.START bit register cannot be

modified. This means, it is no more possible to stop the MH without stopping the PRT

11) Start the PRT and wait for the MH_STS.ENABLE to be set to 1, meaning the PRT is up and running

12) Start the relevant TX FIFO Queues writing to TX_FQ_CTRL0 register. Once a TX FIFO Queue starts,

the registers related to that queue and defined in 5) are write protected (excepted the TX_FQ_CTRL2

register)

13) Start the relevant TX Priority Queue slots writing to the TX_PQ_CTRL0 register

MH_2981

MH_2982

MH_2983

MH_2984

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

240 | 306

1.4.7.2 Stopping MH Procedure

As the PRT is the physical link to the CAN bus, once everything is started (PRT and MH), the MH can

stop only if the PRT is switched off (ENABLE signal going from High to Low leading to

MH_STS.ENABLE bit status set to 0).

For more details on the different conditions to have the CAN protocol operation stopped (namely

normal stop, immediate stop or Bus-Off), refer to the PRT chapter. As there is no way for the MH to

identify the exact root cause of the PRT stop, the MH performs some actions and will leave the SW to

finalize the procedure defined in section Full Stop:

Actions done by the MH when the PRT is switched off:

• When receiving a RX message and if the PRT is having an immediate stop, the RX message is

discarded. An RX_ABORT_IRQ interrupt is generated

• When receiving a RX message and if the PRT is having a normal stop, the RX message reception

is completed

• When transmitting a TX message and if the PRT is having an immediate stop, the TX message is

aborted. A TX_ABORT_IRQ interrupt is generated

• When transmitting a TX message and if the PRT is having a normal stop, the TX message

transmission is completed

• All active RX FIFO Queue n (n € {0, 1, ..., 7}) are put on hold, this means no RX message can be

received. The RX_FQ_STS0.STOP[n] and RX_FQ_STS0.BUSY[n] bit registers for those queues

are set to 1. The other inactive RX FIFO Queues status flags (busy and stop) remain set to 0.

• All active TX FIFO Queue n (n € {0, 1, ..., 7}) are put on hold, this means no TX message can be

transmitted. The TX_FQ_STS0.STOP[n] and TX_FQ_STS0.BUSY[n] status registers for those TX

FIFO Queues are set to 1. The other inactive TX FIFO Queues status flags (busy and stop)

remain set to 0.

• All TX Priority Queue slots are set inactive, this means the TX_PQ_STS0.BUSY[31:0] status

register is set to 0x00000000

1.4.7.2.1.1 Full Stop

The RX/TX FIFO Queues linked list are set back to their initial value defined by their respective

registers. To complete the procedure, the SW must abort all the RX/TX FIFO Queues being still

actives, see Aborting RX FIFO Queue and Aborting TX FIFO Queue sections. Once done, the

MH_STS.BUSY bit register is set to 0. With the MH_STS.BUSY = 0 and the MH_STS.ENABLE = 0, the MH

can be stopped writing 0 to the MH_CTRL.START bit register. At this point, the MH can be entirely

reprogrammed.

Summary for a full stop of the MH:

1) Stop PRT

2) Abort all TX Priority Queue slots

3) Abort all RX FIFO Queues

4) Abort all TX FIFO Queues

MH_2985

MH_3111

MH_3109

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

241 | 306

5) Write MH_CTRL.START=0 (unlocks the MH global configuration registers)

1.4.7.3 RX FIFO Queue Initial Start

For the RX FIFO Queues, some common configuration registers need to be set prior any start. It is

essential to note that those registers are write-protected when the MH is started (MH_CFG.START =

1):

• The MH_CFG.INST_NUM[2:0] bit field to indicate the X_CAN instance number

• The MH_CFG.RX_CONT_DC bit register to select either the Normal or Continuous mode for all

RX FIFO Queues

• The MH_SFTY_CFG and MH_SFTY_CTRL registers according to the safety measures to apply

• The AXI_ADD_EXT register if the DMA_AXI address bus interface is greater than 32bit

• The AXI_PARAMS register to define read and write outstanding

• The RX_FILTER_MEM_ADD register to define address of the RX Filter elements and RX Filter

reference/mask address in the L_MEM

• The RX_FILTER_CRTL register to define how the RX filter must behave when enabled

Before starting a RX FIFO Queue n in Normal mode several configuration registers need to be defined:

• The RX_FQ_START_ADD{n} register defines the address of the First RX Descriptor of the linked

list

• The RX_FQ_SIZE{n}.MAX_DESC bit field register provides the size of the linked list in number of

RX descriptors. The memory area is then computed with the formula:

RX_FQ_SIZE{n}.MAX_DESC * 16byte

• The RX_FQ_SIZE{n}.DC_SIZE bit field register provides the size of the data container attached

to every RX descriptor

• The RX_FQ_CTRL2.ENABLE[n] bit register to enable the RX FIFO Queue n before a start.

Before starting a RX FIFO Queue n in Continuous mode several configuration registers need to be

defined:

• The RX_FQ_START_ADD{n} register defines the address of the First RX Descriptor of the linked

list

• The RX_FQ_SIZE{n}.MAX_DESC bit field register provides the size of the linked list in number of

RX descriptors. The memory area is then computed with the formula:

RX_FQ_SIZE{n}.MAX_DESC * 16byte

• The RX_FQ_SIZE{n}.DC_SIZE bit field register provides the size of the single data container

attached to all RX descriptors

• The RX_FQ_DC_START_ADD{n} register provides the base address of the single data container

defined for the RX FIFO Queue n and attached to all RX descriptors of that queue

• The RX_FQ_RD_ADD_PT{n} register provides the read address pointer used by the SW to read

an RX message in the data container

• The RX_FQ_CTRL2.ENABLE[n] bit register to enable the RX FIFO Queue n before a start

MH_2988

MH_3106

MH_3107

MH_3108

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

242 | 306

In order to define and start a RX FIFO Queue n, do the following:

• A RX FIFO Queue can only start if the MH_CTRL.START bit register is set to 1 (refer to the

Initial MH Start Procedure section)

• The SW must check the RX_FQ_STS0.BUSY[n] and RX_FQ_CTRL2.ENABLE[n] (n € {0, 1, ..., 7})

bit registers are set to 0 (RX FIFO Queue n not already active and enabled). With such bit

configuration the RX_FQ_STS0.STOP[n] bit register must be equal to 0

• Configure the start address of the RX descriptor linked list, for the RX FIFO Queue n, using the

RX_FQ_START_ADD{n} (n € {0, 1, ..., 7}) register

• Configure the maximum number of defined RX descriptors in the linked list, for the RX FIFO

Queue n, using the RX_FQ_SIZE{n}.MAX_DESC[9:0] (n € {0, 1, ..., 7}) register. The memory

size allocated is expected to be RX_FQ_SIZE{n}.MAX_DESC[9:0] * 16byte (RX descriptor size).

To avoid changing the rolling counter bit field in the RX descriptor (see RC[4:0] in RX

descriptor chapter), from time to time and after a wrapping, set the

RX_FQ_SIZE{n}.MAX_DESC[9:0] bit field as a multiple of 32

• Defined in S_MEM the RX descriptors linked list for the RX FIFO Queue n. Those RX descriptors

are continuous in S_MEM and must be prepared before starting the RX FIFO Queue. Only valid

RX descriptors (VALID bit set to 0 in descriptor) can ensure the reception of RX messages

• In case of Normal mode, a dedicated RX data container must be defined in S_MEM per RX

descriptor. For a given RX FIFO Queue, data containers are of the same size and defined in

RX_FQ_SIZE{n}.DC_SIZE[6:0] bit field register. The memory size expected per RX data

container is equal to RX_FQ_SIZE{n}.DC_SIZE[6:0] * 32byte

• In case of Continuous mode, only a single RX data container must be declared for a RX FIFO

Queue n. The RX_FQ_DC_START_ADD{n} (n € {0, 1, ..., 7}) register defines the start address of

that container and the RX_FQ_SIZE{n}.DC_SIZE[11:0] (n € {0, 1, ..., 7}) its size. The memory

size to be allocated to that data container is equal to RX_FQ_SIZE{n}.DC_SIZE[11:0] * 32byte.

• In case of Continuous mode, the RX_FQ_RD_ADD_PT{n} (n € {0, 1, ..., 7}) register must be

initialized to {RX_FQ_DC_START_ADD{n}.VAL[31:1] & 0b11} otherwise left to its default value

• Unmask the interrupt RX_FQ_IRQ[n] (n € {0, 1, ..., 7}) on the interrupt controller

• Enable the RX FIFO Queue n writing 1 to the RX_FQ_CTRL2.ENABLE[n] (n € {0, 1, ..., 7}) bit

register

• Start the RX FIFO Queue n writing 1 to the RX_FQ_CTRL0.START[n] bit register prior starting

the PRT

• Wait for the RX_FQ_STS0.BUSY[n] (n € {0, 1, ..., 7}) bit status register to be set to 1. The RX

FIFO Queue n is considered as active, meaning the RX_FQ_STS0.BUSY[n] bit register is set to 1

and running when the RX_FQ_STS0.STOP[n] bit register is set to 0

As soon as the RX_FQ_STS0.BUSY[n] = 1, the RX_FQ_START_ADD{n}, RX_FQ_SIZE{n},

RX_FQ_RD_ADD_PT{n} and RX_FQ_DC_START_ADD{n} (n € {0, 1, ..., 7}) configuration registers are

write-protected for the RX FIFO Queue n.

MH_2989

MH_2990

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

243 | 306

1.4.7.4 Restarting a RX FIFO Queue

When the MH receives a RX message and there is no valid RX descriptor (VALID bit not set to 0) to

write data to the S_MEM, the RX FIFO Queue n is put on hold (RX_FQ_STS0.BUSY[n] = 1 and

RX_FQ_STS0.STOP[n] = 1). When such event occurs, the RX message is discarded and the

RX_FQ_IRQ[n] interrupt is triggered to the system. Whatever the mode, Normal or Continuous, a

restart is required to set the RX FIFO Queue n back to running. Only an active and running RX FIFO

Queue can receive RX messages.

In order to restart a RX FIFO Queue n, do the following:

• A RX FIFO Queue can only restart if the MH_CTRL.START bit register is set to 1

• The SW must ensure RX_FQ_STS0.BUSY[n], RX_FQ_STS0.STOP[n] and

RX_FQ_CTRL2.ENABLE[n] (n € {0, 1, ..., 7}) bit status registers are all set to 1. In this

configuration, the RX_FQ_START_ADD{n}, RX_FQ_SIZE{n}, RX_FQ_RD_ADD_PT{n} and

RX_FQ_DC_START_ADD{n} (n € {0, 1, ..., 7}) configuration registers are write-protected

• Start the RX FIFO Queue n writing 1 to the RX_FQ_CTRL0.START[n] bit register.

• Wait for the RX_FQ_STS0.STOP[n] bit register to be set to 0, to ensure the RX FIFO Queue n is

considered as active and running

1.4.7.5 Aborting a RX FIFO Queue

Aborting a RX FIFO Queue n does make sense if it is active (RX_FQ_STS0.BUSY[n] = 1) otherwise

nothing is done. This action can be taken at any time and will terminate with various delays depending

on the MH states, see the bullet list below. Aborting a RX FIFO Queue does not affect the other ones

currently running.

This kind of hard stop on a RX FIFO Queue would be mainly used for:

• Restarting properly a RX FIFO Queue when an error or issue has been detected while running

• To stop completely the MH, see Stopping MH Procedure chapter

In order to abort a RX FIFO Queue n running (RX_FQ_STS0.BUSY[n] = 1 and RX_FQ_STS0.STOP[n] = 0)

or on hold (RX_FQ_STS0.BUSY[n] = 1 and RX_FQ_STS0.STOP[n] = 1), do the following:

• Write 1 to the RX_FQ_CTRL1.ABORT[n] (n € {0, 1, ..., 7}) bit register (the

RX_FQ_CTRL2.ENABLE[n] bit register must be still set to 1)

• Wait for the RX_FQ_STS0.BUSY[n] and RX_FQ_STS0.STOP[n] (n € {0, 1, ..., 7}) bit status

register to be set to 0. All status bit registers related to the RX FIFO Queue n are cleared,

RX_FQ_STS1.ERROR[n] and RX_FQ_STS1.UNVALID[n] are set to 0. Once done the RX FIFO

Queue n is considered as no more active

• Write 0 to the RX_FQ_CTRL1.ABORT[n] (n € {0, 1, ..., 7}) bit register

• Set the RX_FQ_CTRL2.ENABLE[n] (n € {0, 1, ..., 7}) bit register back to 0 to protect the RX

FIFO Queue n from being restarted

As soon as the RX FIFO Queue is inactive, it is then possible to configure and change the setting of the

RX FIFO Queue n, no write protection is active.

MH_3207

MH_2991

MH_2992

MH_3096

MH_2993

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

244 | 306

When aborting a RX FIFO Queue n, five cases need to be considered:

• The RX FIFO Queue n is active and running (RX_FQ_STS0.BUSY[n] = 1 and

RX_FQ_STS0.STOP[n] = 0) and a new RX message is coming. The RX FIFO Queue number to

receive the RX message data is not known when the abort is executed. If the RX message after

filtering is rejected, the MH will wait for the reception of the timestamp before setting the

RX_FQ_STS0.BUSY[n] bit register to 0. In case the RX filtering is too long, and has not finished

before receiving the timestamp, the RX_FQ_STS0.BUSY[n] bit register is set to 0, only at the

end of the RX filtering process.

• The RX FIFO Queue n is active and running (RX_FQ_STS0.BUSY[n] = 1 and

RX_FQ_STS0.STOP[n] = 0) and a new RX message is coming. The RX FIFO Queue number to

receive the RX message data is not known when the abort is executed. If the RX message after

filtering is accepted, the MH will wait for the last data to be written in S_MEM and the writing

of the acknowledge, before setting the RX_FQ_STS0.BUSY[n] bit register is set to 0. Even if the

RX message accepted does not target the RX FIFO Queue to abort, the same principle applies.

• The RX FIFO Queue n is active and running (RX_FQ_STS0.BUSY[n] = 1 and

RX_FQ_STS0.STOP[n] = 0) and no RX message data is received from the PRT (transmission in

progress for instance). As there is no RX message received, the RX FIFO Queue n is aborted

immediately and the RX_FQ_STS0.BUSY[n] bit register is set to 0.

• The RX FIFO Queue n is active and not running (RX_FQ_STS0.BUSY[n] = 1 and

RX_FQ_STS0.STOP[n] = 1) when the abort is executed. The RX FIFO Queue n is aborted

immediately and the RX_FQ_STS0.BUSY[n] and RX_FQ_STS0.STOP[n] bit registers are set to 0.

• The RX FIFO Queue n is inactive (RX_FQ_STS0.BUSY[n] = 0 and RX_FQ_STS0.STOP[n] = 0)

when the abort is executed. Nothing is done.

As the MH will complete its current tasks before stopping the RX FIFO Queue, the RX_ABORT_IRQ

interrupt will never be set.

1.4.7.6 TX FIFO Queue Initial Start

For the TX FIFO Queues, some common configuration registers need to be set prior any start. It is

essential to note that those registers are write-protected when the MH is started (MH_CFG.START =

1):

• The TX_DESC_MEM_ADD.FQ_BASE_ADDR[15:0] bit field register defines the base address to

store the TX descriptors for the TX FIFO Queues in the L_MEM

• The MH_CFG.MAX_RETRANS[7:0] bit field to define the number of possible re-transmissions for

the same message

• The MH_CFG.INST_NUM[2:0] bit field to indicate the X_CAN instance number

• The MH_SFTY_CFG and MH_SFTY_CTRL registers according to the safety measures to apply

• The AXI_ADD_EXT register if the DMA_AXI address bus interface is greater than 32bit

• The AXI_PARAMS register to define read and write outstanding

• The TX_FILTER_CTRL0/TX_FILTER_CTRL1 control registers and TX_FILTER_REFVAL{n} (n € {0, 1,

2, 3}) configuration registers, if the TX filter is enabled. All the registers assigned to this

MH_3099

MH_3113

MH_2994

MH_3104

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

245 | 306

feature must be configured before starting any TX FIFO Queues, see TX Filter chapter for more

details

Before starting a TX FIFO Queue n several configuration registers need to be defined:

• The TX_FQ_START_ADD{n} register defines the address of the First TX Descriptor of the linked

list

• The TX_FQ_SIZE{n}.MAX_DESC register provides the size of the linked list in number of TX

descriptors

• The TX_FQ_CTRL2.ENABLE[n] bit register to enable the TX FIFO Queue n before a start

In order to define a TX FIFO Queue n, do the following:

• A TX FIFO Queue can only start if the MH_CTRL.START bit register is set to 1 (refer to the Initial

MH Start Procedure section)

• The SW must check the TX_FQ_STS0.BUSY[n] and TX_FQ_CTRL2.ENABLE[n] (n € {0, 1, ..., 7})

bit registers are set to 0 (TX FIFO Queue n not already active and enabled). With such bit

configuration the TX_FQ_STS0.STOP[n] bit register must be equal to 0

• Configure the start address of the TX descriptor linked list for the TX FIFO Queue n using the

TX_FQ_START_ADD{n} (n € {0, 1, ..., 7}) register

• Define the maximum number of TX descriptors in the linked list, for the TX FIFO Queue n,

using the TX_FQ_SIZE{n}.MAX_DESC[9:0] (n € {0, 1, ..., 7}) register. The memory size allocated

is expected to be TX_FQ_SIZE{n}.MAX_DESC[9:0] * 32byte (TX descriptor size)

• In case no TX message is expected to be sent right away: The First TX Descriptor must be

declared with a VALID bit set to 0. Doing so, the TX FIFO Queue will be put on hold right away

after being started, waiting for a valid TX descriptor to send a TX message.

• In case some TX messages are expected to be sent right away: Define the relevant number of

TX descriptors in the linked list with their respective data container. Only valid TX descriptors

(VALID bit set to 1 in descriptor) can trig the transmission of TX messages. It is mandatory to

declare an invalid TX descriptor (VALID bit set to 0) after the latest one being valid. This is

required to put the RX FIFO Queue on hold when no more messages need to be sent.

• Unmask the interrupt TX_FQ_IRQ[n] (n € {0, 1, ..., 7}) on the interrupt controller

• Enable the TX FIFO Queue n writing 1 the TX_FQ_CTRL2.ENABLE[n] (n € {0, 1, ..., 7}) bit

register

• Start the TX FIFO Queue n writing 1 to the TX_FQ_CTRL0.START[n] bit register. The PRT must

be started prior this action

• Wait for the TX_FQ_STS0.BUSY[n] (n € {0, 1, ..., 7}) bit status register to be set to 1. Once

done, the TX FIFO Queue n is considered as active

• The TX FIFO Queue n will be running (TX_FQ_STS0.STOP[n] = 0) up to the point an invalid TX

descriptor is fetched from the S_MEM and then goes on hold (TX_FQ_STS0.STOP[n] = 1). The

TX_FQ_IRQ[n] interrupt is triggered to the system to notify such state. In case the TX FIFO

Queue is started with no TX messages, this interrupt is expected to happen in a very short time

(roughly the time to fetch the TX descriptor from the S_MEM)

 As soon as the TX_FQ_STS0.BUSY[n] = 1, the TX_FQ_START_ADD{n} and TX_FQ_SIZE{n} configuration

registers are write-protected for the TX FIFO Queue n.

MH_2995

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

246 | 306

1.4.7.7 Restarting a TX FIFO Queue

When the MH has transmitted a TX message and there is no valid TX descriptor (VALID bit set to 0),

the TX FIFO Queue n is put on hold (TX_FQ_STS0.BUSY[n] = 1 and TX_FQ_STS0.STOP[n] = 1). The

TX_FQ_IRQ[n] interrupt is triggered to notify the system of such state. This is normal behavior, and

such scenario can occur if the SW does not provide new TX messages in time before the MH gets to

the last valid descriptor

In order to restart a TX FIFO Queue n, do the following:

• A TX FIFO Queue can only start if the MH_CTRL.START bit register is set to 1 and

MH_STS.ENABLE = 1

• The SW must ensure TX_FQ_STS0.BUSY[n], TX_FQ_STS0.STOP[n] and

TX_FQ_CTRL2.ENABLE[n] (n € {0, 1, ..., 7}) bit status registers are all set to 1. In this

configuration, the TX_FQ_START_ADD{n}, TX_FQ_SIZE{n} and TX_FQ_RD_ADD_PT{n} (n € {0, 1,

..., 7}) configuration registers are write- protected

• If a new TX message needs to be sent, declare the TX descriptor in the linked list at the

address defined in the TX_FQ_ADD_PT{n} register

• Start the TX FIFO Queue n writing 1 to the TX_FQ_CTRL0.START[n] bit register. Once started

the TX_FQ_STS0.STOP[n] bit register goes to 0

Once done, the TX FIFO Queue n is considered as active, meaning the TX_FQ_STS0.BUSY[n] bit

register is set to 1 and running if the TX_FQ_STS0.STOP[n] bit register is set to 0.

1.4.7.8 Aborting a TX FIFO Queue

Aborting a TX FIFO Queue n does make sense if it is active (TX_FQ_STS0.BUSY[n] = 1) otherwise

nothing is done. This action can be taken at any time and will terminate with various delays depending

on the MH states, see the bullet list below. Aborting a TX FIFO Queue does not affect the other ones

currently running.

This kind of hard stop on a TX FIFO Queue would be mainly used for:

• Restarting properly a TX FIFO Queue when an error or issue has been detected while running

• To stop completely the MH, see Stopping MH Procedure chapter

In order to stop a TX FIFO Queue n running, do the following:

• Write 1 to the TX_FQ_CTRL1.ABORT[n] (n € {0, 1, ..., 7}) bit register

• Wait for the TX_FQ_STS0.BUSY[n] and TX_FQ_STS0.STOP[n] (n € {0, 1, ..., 7}) bit status

register to be set to 0

• Write 0 to the TX_FQ_CTRL1.ABORT[n] (n € {0, 1, ..., 7}) bit register

• Set the TX_FQ_CTRL2.ENABLE[n] (n € {0, 1, ..., 7}) bit register back to 0 to protect the TX FIFO

Queue n from being restarted

MH_2996

MH_3208

MH_2997

MH_2998

MH_3097

MH_2999

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

247 | 306

Once done the TX FIFO Queue n is considered as no more active, meaning the TX_FQ_STS0.BUSY[n]

and TX_FQ_STS0.STOP[n] bit registers are both set to 0. It is then possible to configure and change

the setting of the TX FIFO Queue n, no write protection is active. All status bit registers related to the

TX FIFO Queue n are cleared, TX_FQ_STS1.ERROR[n] and TX_FQ_STS1.UNVALID[n] are set to 0.

When aborting a TX FIFO Queue n, five scenarios can occur:

• The TX FIFO Queue n is active and running (TX_FQ_STS0.BUSY[n] = 1 and

TX_FQ_STS0.STOP[n] = 0) and one of its TX messages is selected as the highest priority

message. As the message is not yet sent, nothing is preventing the MH to abort the TX FIFO

Queue n. The TX_FQ_STS0.BUSY[n] bit register is set immediately to 0. The TX FIFO Queue n

becomes inactive after a few cycles.

• The TX FIFO Queue n is active and running (TX_FQ_STS0.BUSY[n] = 1 and

TX_FQ_STS0.STOP[n] = 0) and one of its TX messages is being transmitted to the PRT. The MH

finishes the current TX message before aborting the TX FIFO Queue n. The TX FIFO Queue n

becomes inactive when the current TX message of that TX FIFO Queue n is acknowledged.

Some delays may occur before having the TX_FQ_STS0.BUSY[n] set to 0.

• The TX FIFO Queue n is active and running (TX_FQ_STS0.BUSY[n] = 1 and

TX_FQ_STS0.STOP[n] = 0) and another TX FIFO Queue is sending a TX message to the PRT. As

nothing is preventing the MH to abort the TX FIFO Queue n, the TX_FQ_STS0.BUSY[n] bit

register is set immediately to 0. The TX FIFO Queue n becomes inactive after a few cycles.

• The TX FIFO Queue n is active and not running (TX_FQ_STS0.BUSY[n] = 1 and

TX_FQ_STS0.STOP[n] = 1) when the abort is executed. As nothing is preventing the MH to

abort the TX FIFO Queue n, the TX_FQ_STS0.BUSY[n] and TX_FQ_STS0.STOP[n] bit registers

are set immediately to 0. The TX FIFO Queue n becomes inactive after a few cycles.

• The TX FIFO Queue n is inactive (TX_FQ_STS0.BUSY[n] = 0 and TX_FQ_STS0.STOP[n] = 0)

when the abort is executed. Nothing is done.

As the MH will complete its current tasks before stopping the TX FIFO Queue, the TX_ABORT_IRQ

interrupt will never be set.

1.4.7.9 TX Priority Queue Initialization

A TX Priority Queue is defined by up to 32 slots where a TX Header descriptor is defined per slot.

For the TX FIFO Priority Queue, some common configuration registers need to be set for all slots prior

a start. It is essential to note that those registers are write-protected when the MH is started

(MH_CFG.START = 1) :

• The MH_CFG.MAX_RETRANS[7:0] bit field to define the number of possible re-transmissions for

the same message

• The MH_CFG.INST_NUM[2:0] bit field to indicate the X_CAN instance number

• The MH_SFTY_CFG and MH_SFTY_CTRL registers according to the safety measures to apply

• The AXI_ADD_EXT register if the DMA_AXI address bus interface is greater than 32bit

• The AXI_PARAMS register to define read and write outstanding

MH_3100

MH_3114

MH_3093

MH_3105

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

248 | 306

• The TX_DESC_MEM_ADD.PQ_BASE_ADDR[15:0] bit field register defines the base address to

store the TX descriptors for the TX Priority Queue in the L_MEM

• The TX_FILTER_CTRL0/TX_FILTER_CTRL1 control registers and TX_FILTER_REFVAL{n} (n € {0, 1,

2, 3}) configuration registers, if the TX filter is enabled. All the registers assigned to this

feature must be configured before starting any TX FIFO Queues, see TX Filter chapter for more

details

In order to define a TX Priority Queue, do the following:

• Check that TX_PQ_STS0.BUSY[n] is equal to 0 for n € {0, 1, ..., 31}, no TX Priority Queue slots

must be active

• Define the TX Priority Queue start address in the TX_PQ_START_ADD register

• Define the size of the TX Priority Queue based on the number of expected slots to be active at

the same time. Considering n slots, the expected memory size to be allocated for the TX

Priority Queue is equal to n * 32byte (TX descriptor size)

As soon as one of the slots is started, the TX_PQ_START_ADD register is write-protected. Refer to the

Starting a TX Priority Queue Slot section for more details.

1.4.7.10 Starting a TX Priority Queue Slot

Ensure the TX Priority Queue is initialized, refer to the TX Priority Queue Initialization section.

In order to start a TX Priority Queue slot n, do the following:

• A TX Priority Queue slot n can only start if the MH_CTRL.START bit register is set to 1 and

MH_STS.ENABLE = 1 (refer to the Initial MH Start Procedure section)

• Define in S_MEM the TX descriptor for the TX Priority Queue slot n, at the address

TX_PQ_START_ADD[31:0] + n * 32byte

• Unmask the interrupt TX_PQ_IRQ on the interrupt controller

• Enable the TX Priority Queue slot n in writing 1 to the TX_PQ_CTRL2.ENABLE[n] (n € {0, 1, ...,

31}) bit register

• Start the TX Priority Queue slot n in writing 1 to the TX_PQ_CTRL0.START[n] (n € {0, 1, ..., 31})

bit register. The PRT must be started prior this action.

• Wait for the TX_PQ_STS0.BUSY[n] (n € {0, 1, ..., 31}) bit status register to be set to 1. As soon

as one TX Priority Queue slot is busy, the TX_PQ_START_ADD register is write protected.

Once the previous steps are completed, the TX Priority Queue slot n is considered as active, meaning

the TX_PQ_STS0.BUSY[n] (n € {0, 1, ..., 31}) is set to 1.

As soon as the TX message defined in TX Priority Queue slot n is sent, the TX_PQ_STS0.BUSY[n] is set

to 0 automatically. It is recommended to set the TX_PQ_CTRL2.ENABLE[n] bit register back to 0, once

the transmission is completed, to avoid any start of non-initialized slots.

It is essential to note that when the MH stops, all the TX Priority Queue slots are set automatically

inactive, meaning TX_PQ_STS0.BUSY[31:0] bit register are all set to 0.

MH_3094

MH_3000

MH_3001

MH_3004

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

249 | 306

1.4.7.11 Aborting a TX Priority Queue slot

In order to stop a TX Priority Queue slot n running, do the following:

• Write 1 to the TX_PQ_CTRL1.ABORT[n] (n € {0, 1, ..., 31}) bit register

• Wait for the TX_PQ_STS0.BUSY[n] (n € {0, 1, ..., 31}) bit status register to be set to 0

• Write 0 to the TX_PQ_CTRL1.ABORT[n] (n € {0, 1, ..., 31}) bit register

• Set the TX_PQ_CTRL2.ENABLE[n] (n € {0, 1, ..., 31}) back to 0 to protect the TX Priority Queue

slot n from being restarted

Once done the TX Priority Queue slot n is set inactive, meaning the TX_PQ_STS0.BUSY[n] bit register

is set to 0. It is possible to configure and change the global setting of the TX Priority Queue, only if

there are no TX Priority Queue slot actives, meaning TX_PQ_STS0.BUSY[31:0] equal 0. All status bit

registers related to the RX FIFO Queue n are cleared, TX_PQ_STS1.SENT[n] (n € {0, 1, ..., 31}) is set to

0.

When aborting a TX Priority Queue slot n, four scenarios can occur:

• The TX Priority Queue slot n is active (TX_PQ_STS0.BUSY[n] = 1) and its TX message is

selected as the highest priority message. As the message is not yet sent, nothing is preventing

the MH to abort the TX Priority Queue slot n. The TX_PQ_STS0.BUSY[n] bit register is set

immediately to 0. The TX Priority Queue slot n becomes inactive after a few cycles.

• The TX Priority Queue slot n is active (TX_PQ_STS0.BUSY[n] = 1) and its TX message is being

transmitted to the PRT. The MH finishes the TX message in progress. The TX Priority Queue

slot n becomes inactive when the TX descriptor of the slot n is acknowledged. Some delays

may occur before having the TX_PQ_STS0.BUSY[n] set to 0

• The TX Priority Queue slot n is active (TX_PQ_STS0.BUSY[n] = 1) and another TX Priority Queue

slot is sending a TX message to the PRT. As nothing is preventing the MH to abort the TX

Priority Queue slot n, the TX_PQ_STS0.BUSY[n] bit register is set immediately to 0

• The TX Priority Queue slot n is inactive (TX_PQ_STS0.BUSY[n] = 0) when the abort is executed.

Nothing is done.

As the MH will complete its current tasks before stopping the TX Priority Queue slot, the

TX_ABORT_IRQ interrupt will never be set.

1.4.7.12 RX Filter Setting

Prior doing any RX Filter configuration, the MH must be stopped (MH_CTRL.START = 0).

The RX Filter configuration does require the SW to:

1) Write the RX Filter Elements in the L_MEM, refer to the RX Filter chapter for RX Filter Element

definition. How they are organized in the L_MEM is described in the Local Memory Map section (RX

Filter Elements) in the Software Interface chapter.

2) Set the base address of the RX Filter elements in the RX_FILTER_MEM_ADD.BASE_ADDR[15:0]

register. This base address value is specified in a 64KByte memory space area (L_MEM address bus

width is 16bit only).

3) Set the RX_FILTER_CTRL register in write Privileged mode, see RX Filter chapter for more details.

MH_3005

MH_3101

MH_3115

MH_3081

MH_3082

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

250 | 306

Once the MH is started (MH_CTRL.START = 1), the RX_FILTER_MEM_ADD and RX_FILTER_CTRL are

write-protected.

1.4.7.13 TX Filter Setting

Prior doing any TX Filter configuration, the MH must be stopped (MH_CTRL.START = 0).

The TX Filter configuration does require the SW to:

1) Set the TX_FILTER_CTRL0 register (in write Privileged mode) to define the TX Filter global setting,

see TX Filter chapter for more details.

2) Write the TX_FILTER_CTRL1 register (in write Privileged mode) to enable one of the 16 TX Filters

and to select the right bit field in the TX message header to compare with, see TX Filter chapter for

more details.

3) Set the TX_FILTER_REFVAL0, TX_FILTER_REFVAL1, TX_FILTER_REFVAL2 and TX_FILTER_REFVAL3

registers (in write Privileged mode) to define value or value/mask pair to perform the comparison, see

TX Filter chapter for more details.

Once the MH is started (MH_CTRL.START = 1), the TX_FILTER_CTRL0, TX_FILTER_CTRL1,

TX_FILTER_REFVAL0, TX_FILTER_REFVAL1, TX_FILTER_REFVAL2 and TX_FILTER_REFVAL3 are write

protected.

1.4.7.14 Timeout Setting

Three different timeouts can be set in the MH to protect:

• The AXI system bus interface connected to the MH DMA_AXI interface

• The AXI local memory interface connected to the MEM_AXI interface

• The internal bus (RX/TX)_MSG used to receive and transmit data from and to the PRT

A common prescaler is used to set the reference clock for all timeout counters, see

MH_SFTY_CFG.PRESCALER[1:0] register. According to the value defined in the

MH_SFTY_CFG.PRESCALER[1:0] register, the timeout counter reference clock is either CLK/32,

CLK/64, CLK/128 or CLK/512.

In order to set the timeout value assigned to the 3 interfaces use the following registers:

• Set the value in the MH_SFTY_CFG.DMA_TO_VAL[7:0] register for the DMA_AXI interface

• Set the value in the MH_SFTY_CFG.MEM_TO_VAL[7:0] register for the MEM_AXI interface

• Set the value in the MH_SFTY_CFG.PRT_TO_VAL[13:0] register for the (RX/TX)_MSG interfaces

As the CLK and prescaler are common to all timeout counters, once the CLK is defined and the

prescaler set, only a defined range is possible. The table below provides the different possible range

for every timeout (according to the CLK clock frequency and clock ratio).

CLK

(MHz)

PRESCALER
Timeout

DMA_AXI Timeout

range (us)

MEM_AXI Timeout

range (us)

(RX/TX)_MSG

Timeout range (us)

MH_3083

MH_3084

MH_3085

MH_3086

MH_3116

MH_3124

MH_3118

MH_3123

MH_3122

MH_3120

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

251 | 306

Value CLK

Ratio

Step (us)

Max Min Max Min Max Min

255 0 255 0 16383 0

80 0 32 0.4 102 0 102 0 6553.2 0

1 64 0.8 204 0 204 0 13106.4 0

2 128 1.6 408 0 408 0 26212.8 0

3 512 6.4 1632 0 1632 0 104851.2 0

160 0 32 0.2000 51.00 0 51.00 0 3276.60 0

1 64 0.4000 102.00 0 102.00 0 6553.20 0

2 128 0.8000 204.00 0 204.00 0 13106.40 0

3 512 3.2000 816.00 0 816.00 0 52425.60 0

320

0 32 0.1000 25.50 0 25.50 0 1638.30 0

1 64 0.2000 51.00 0 51.00 0 3276.60 0

2 128 0.4000 102.00 0 102.00 0 6553.20 0

3 512 1.6000 408.00 0 408.00 0 26212.80 0

1.4.7.14.1 DMA_AXI Interface Timeout Configuration

Any transfer from or to the system bus is protected using a timeout on the AXI read and write channel.

As the timeout value is common to the AXI read and write channels, the setting must ensure read and

write access time are covered.

A timeout counter is implemented per DMA channel, despite using the same timeout reference value.

The timeout value is defined with the MH_SFTY_CFG.DMA_TO_VAL[7:0] register, the

MH_SFTY_CFG.PRESCALER[1:0] register and depends on the CLK clock frequency:

DMA AXI timeout value (us) = (1/(CLK(MHz))*(ratio defined in

MH_SFTY_CFG.PRESCALER[1:0])*MH_SFTY_CFG.DMA_TO_VAL[7:0]

There are two different configurations of the MH leading to a different computation of the timeout

value according to the number of outstanding transactions programmed in the AXI_PARAMS register:

• The AXI_PARAMS.AR_MAX_PEND[1:0] and AXI_PARAMS.AW_MAX_PEND[1:0] bit register are

both equal to 1. The timeout counter starts when the AXI read or write command is accepted

and stops when the last data response is received

• The AXI_PARAMS.AR_MAX_PEND[1:0] or AXI_PARAMS.AW_MAX_PEND[1:0] bit register is greater

than 1. The timeout counter starts when the first AXI read or write command is accepted and

stops when there are no more outstanding transactions

Here are the equations to fulfil:

Timeout value > AXI_PARAMS.AR_MAX_PEND[1:0]*Prdl

Timeout value > AXI_PARAMS.AW_MAX_PEND[1:0]*Pwdl

MH_3125

MH_3119

MH_3141

MH_3128

MH_3130

MH_3131

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

252 | 306

where Prdl = Peak of the read data system latency, Pwdl = Peak of the write data system latency and

(AXI_PARAMS.AR_MAX_PEND[1:0] and AXI_PARAMS.AW_MAX_PEND[1:0] are always >= 1)

If the reads or writes do not complete in time, the DMA_TO_ERR interrupt is triggered to the system.

The SFTY_INT_STS.DMA_AXI_RX_TO_ERR and SFTY_INT_STS.MEM_AXI_TX_TO_ERR bit register provide

the information about the timeout source interrupt.

1.4.7.14.2 MEM_AXI Interface Timeout Configuration

Any transfer from or to the local memory L_MEM is protected using a timeout on the AXI read and

write channel. As the timeout value is common to the AXI read and write channels, the setting must

ensure read and write access time are covered.

A timeout counter is implemented per DMA channel, despite using the same timeout reference value.

The timeout value is defined with the MH_SFTY_CFG.DMA_TO_VAL[7:0] register, the

MH_SFTY_CFG.PRESCALER[1:0] and depends on the CLK clock frequency:

MEM AXI timeout value (us) = (1/(CLK(MHz))*(ratio defined in

MH_SFTY_CFG.PRESCALER[1:0])*MH_SFTY_CFG.MEM_TO_VAL[7:0]

The computation of the timeout value is different on the AXI read and write channels:

• On the AXI write channel, the timeout counter starts when the AXI write command is accepted

and stops when the last data of that command is written

• On the AXI read channel, the timeout counter starts when the first AXI read or write command

is accepted and stops when there are no more outstanding transactions

Here are the equations to fulfil:

Timeout value > Prdl*2

Timeout value > Pwdl

where Prdl = Peak of the read data system latency, Pwdl = Peak of the write data system latency

If the reads or writes do not complete in time, the MEM_TO_ERR interrupt is triggered to the system.

The SFTY_INT_STS.MEM_AXI_RX_TO_ERR and SFTY_INT_STS.MEM_AXI_TX_TO_ERR bit register provide

the information about the timeout source interrupt.

1.4.7.14.3 (RX/TX)_MSG Interface Timeout Configuration

The timeout counter, one per interface, starts counting when a start of frame is received from the PRT

or transmitted to the PRT (SOF codeword identified). It ends when the last timestamp word is

received from the PRT or transmitted to the PRT (TS1 codeword).

The timeout value, defined in the MH_SFTY_CFG.PRT_TO_VAL[12:0] register, is common to RX_MSG

and TX_MSG interfaces. The SW must set the timeout value greater than the longest CAN frame to

support in receive and transmit.

MH_3129

MH_3132

MH_3133

MH_3142

MH_3134

MH_3135

MH_3136

MH_3137

MH_3121

MH_3126

MH_3144

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

253 | 306

The timeout value is defined with the MH_SFTY_CFG.PRT_TO_VAL[7:0] register, the

MH_SFTY_CFG.PRESCALER[1:0] and depends on the CLK clock frequency:

PRT timeout value (us) = (1/(CLK(MHz))*(ratio defined in

MH_SFTY_CFG.PRESCALER[1:0])*MH_SFTY_CFG.PRT_TO_VAL[7:0]

If the received or transmitted CAN frame does not complete in time, the DP_TO_ERR interrupt is

triggered to the system. The SFTY_INT_STS.DP_PRT_RX_TO_ERR and SFTY_INT_STS.DP_PRT_TX_TO_ERR

bit register provide the information about the timeout source interrupt.

IMPORTANT: In case of data underrun, the PRT will complete its current frame, but the MH will

provide right away the next TX message. Therefore, the TX_MSG timeout is restarted while the PRT is

still transmitting the previous frame. If such DU codeword is received from the PRT, the timeout value

needs to cover 2 times the largest CAN frame (the previous one to complete + the next one waiting to

be transmitted).

LIMITATIONS: Due to the range of the RX/TX timeout value, which can be programmed in the

MH_SFTY_CFG.PRT_TO_VAL[7:0] and MH_SFTY_CFG.PRESCALER[1:0] registers, the factor of 2 due to

the data underrun, there is a limitation regarding the CAN XL protocol. Considering a very low bitrate,

a maximum clock frequency of 320MHz, a maximum payload size of 2048bytes and a bit rate for the

arbitration phase equal to 0.5Mbps: Timeout value can cover CAN XL bit rate greater or equal to

1.4Mbps.

A CAN XL frame with a maximum payload size of 2048bytes, and a bit rate of 1Mbps, would mean a

message duration of 18.2ms (which is not acceptable for a real time system). In order to address a bit

rate of 1Mbps in CAN XL, with the MH at 320MHz, the maximum payload size must be limited to

1460bytes.

At 160MHz, there is no issue regarding the setting of the RX/TX Timeout value, whatever the bitrate,

the payload size of the CAN frame or the CAN protocols.

1.4.8 PRT and ENABLE Signal

The PRT signalizes via ENABLE whether it is active and requires message handling or not. It means a

message can be received or transmitted only if the ENABLE signal is set high by the PRT.

As soon as this ENABLE signal goes low, the MH must stop its activity and goes in idle state. As the

MH is stopped, the active TX FIFO Queue n and RX FIFO Queue m are put on hold, it means

TX_FQ_STS0.BUSY[n] = 1, RX_FQ_STS0.BUSY[m] = 1, TX_FQ_STS0.STOP[n] = 1 and

RX_FQ_STS0.STOP[m] = 1. Any active TX Priority Queue slot k is discarded, TX_PQ_STS0.BUSY[k] = 0.

Any RX message received, or TX message transmitted at that time is discarded.

• Reinitialize MH: For more details, refer to the section Full Stop in Stopping MH Procedure

chapter.

MH_3127

MH_3195

MH_3196

MH_3197

MH_2654

MH_2655

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

254 | 306

1.5 PRT – Protocol Controller

1.5.1 Overview

The PRT is a CAN XL Protocol Controller that can be integrated into different CAN modules. The PRT

performs CAN communication as specified in ISO 11898-1:2015 (Classical CAN and CAN FD) and in

CiA610-1 (CAN XL). The bitrate can be configured to values up to 20MBit/s at a clock speed of

160MHz, depending on the resources of the message handler and on the used semiconductor

technology. For the connection to the physical layer, additional transceiver hardware is required,

which is connected via GPIO ports or may be integrated into the CAN module (see chapter

“Transceiver Interface”).

The PRT does not provide internal buffering of frames, so that data has to be transferred by IP internal

Message Busses in 32 bit slices in real-time while (de)-serialization on the CAN Bus. Thus, single data

transfers at the internal Message Busses are closely time-synchronized to the schedule at the CAN

bus.

1.5.2 Features

• Classical CAN and CAN FD as specified in ISO 11898-1:2015

• CAN XL as specified in CiA610-1

• Classical CAN bit rate up to 1Mbps

• Arbitration phase bit rate up to 1Mbps for CAN FD and for CAN XL

• CAN FD data phase bit rate up to 8Mbps at a clock speed of 80 MHz or 160MHz

• CAN XL data phase bit rate up to 20Mbps at a clock speed of 160MHz

• Dedicated Timebase interface

1.5.3 Block Diagram

PRT_1

PRT_365

PRT_3

PRT_366

PRT_4

PRT_5

PRT_6

PRT_7

PRT_12

PRT_13

PRT_1115

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

255 | 306

XCAN_PRT - CAN XL Protocol Controller

RX-Buffers
RX_MSG

TX_MSG

CAN_TX

REG AXI

ENABLE

CAN_RX

XLT

D_RX

CAPTURE

TIMESTAMP

Rx

Tx

TX-Buffers

Shift Register

64

Protocol

FSM

AXI Bus
Multibit Signal
Discrete Signal

Config / Control / Status Registers

PWME_CFG

D_TX

ONLY_CC_FD (static)

ONLY_CC (static)

EVENTS

18

Figure: PRT Block Diagram

Figure above shows principle of the PRT’s functions. When the PRT and the message handler operate

in different clock domains, they are connected via CDC modules. The Time Base is captured inside a

CDC module, triggered by the PRT’s output signal CAPTURE.

The PRT consists of the CAN Protocol FSM, an Rx/Tx Shift Register, a set of interface registers for

configuration, control, and status information as well as interfaces to the message handler for

received messages and for messages to be transmitted. The PRT is not designed to store complete

messages, there is only transient caching for two memory words for each direction during reception or

transmission. A separate message handler is needed for the storage of whole messages as well as for

functions like acceptance filtering, sorting of received messages into specific message buffers, and

ordering the sequence of messages that are requested for transmission. Messages are streamed

between message handler and PRT as sequences or 32 bit data words.

The host accesses the PRT’s registers via REG_AXI, an AMBA AXI4-Lite interface, for configuration,

control, and status information.

1.5.4 Software Interface

1.5.4.1 Register Map

The PRT’s address map starts at the PRT’s local address 0x00. All addresses are byte addresses, but

the address map is organized as 32-bit words. The registers are 32 bit wide, while some register bits

may be reserved. Reserved bits are always read as 0.

PRT_15

PRT_16

PRT_17

PRT_18

PRT_21

PRT_22

PRT_23

PRT_24

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

256 | 306

All registers are set to 0x00000000 after hardware reset except the two constant registers ENDN and

PREL. The configuration registers are writable while the CAN communication is stopped, they are

read-only while the CAN communication is started. The configuration registers are not changed by a

software reset, see chapter “Software Reset”.

Address
offset

Register name Description Access Initial value

Status information of the PRT

0x00 ENDN Endianness Test Register read-only 0x87654321

0x04 PREL PRT Release Identification Register read-only 0x05400000

0x08 STAT PRT Status Register read-only 0x00000010

Event information of the PRT

0x20 EVNT Event Status Flags Register read-write 0x0000

Control of the PRT during runtime

0x40 LOCK Unlock Sequence Register write-only 0x00000000

0x44 CTRL Control Register write-only 0x0000

0x48 FIMC Fault Injection Module Control Register read-write 0x0000

0x4C TEST Hardware Test functions register read-write 0x00000008

Configuration of the PRT before runtime

0x60 MODE Operating Mode Register read-write 0x000

0x64 NBTP Arbitration Phase Nominal Bit Timing Register read-write 0x00000000

0x68 DBTP CAN FD Data Phase Bit Timing Register read-write 0x00000000

0x6C XBTP XAN XL Data Phase Bit Timing Register read-write 0x00000000

0x70 PCFG PWME Configuration Register read-write 0x000000

1.5.4.1.1 Register Access

The PRT registers are accessible in read/write mode through its AXI4-Lite slave interface REG_AXI

(compliant to AMBA 4 ARM Ltd protocol, see [5]).

Any access to registers, either read or write, must use a 32bit aligned address otherwise a SLVERR is

provided as a response.

When an access is performed to a non-mapped register in the address range, a SLVERR is provided as

a response.

The phrase ‘SLVERR is provided as a response’ means that the REG_AXI responds with RRESP =

‘SLVERR’ respective BRESP = ‘SLVERR’. When attempting to write into any of the PRT's currently

locked registers, the write does not occur, but no ‘SLVERR’ is triggered. A register Read Back is

mandatory after writing to a potentially locked register, to confirm it has been correctly written.

The error is only reported on the AXI4-Lite protocol, no interrupt is triggered for such issue.

PRT_25

PRT_1085

PRT_1091

PRT_1092

PRT_1093

PRT_1094

PRT_803

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

257 | 306

1.5.4.2 Register Description

1.5.4.2.1 status

REGISTER DESCRIPTION: Status information of the PRT

SIZE:

Register Base Address: 0x00

Register Address Range: 0x20

1.5.4.2.1.1 ENDN

Endianness Test Register

Address
Offset:

0x00000000 Initial Value: 0x87654321

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit E
T
V

Mode R

Initial
Value 0

x8
7
6

5
4
3
2
1

Bit 31:0 The purpose of this register is to identify the beginning of the PRT
address map in a memory dump and to check the proper endianness
data byte mapping when the data word is routed through different
busses.

1.5.4.2.1.2 PREL

PRT Release Identification Register.

PRT_907

PRT_908

PRT_909

PRT_910

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

258 | 306

Address
Offset:

0x00000004 Initial Value: 0x05400000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit R
E
L

S
T
E
P

S
U

B
S

T
E
P

Y
E
A
R

M
O

N

D
A
Y

Mode R

R

R

R

R

R

Initial
Value 0

x0

0
x5

0
x4

0
x0

0
x0

0
x0

Bit 7:0 Define the day of the release using a binary coded decimal
representation (1 being the first day of the month and so forth). This
reset value is defined by the generic parameter
DESIGN_TIME_STAMP_G[7:0]. If the generic parameter
DESIGN_TIME_STAMP_G is not set, the default value is the one defined
here

Bit 15:8 Define the month of the release using a binary coded decimal
representation (1 being January and so forth). This reset value is defined
by the generic parameter DESIGN_TIME_STAMP_G[15:8]. If the generic
parameter DESIGN_TIME_STAMP_G is not set, the default value is the one
defined here

Bit 19:16 Define the year of the release using a binary coded decimal
representation (0 being 2020 and so forth…). This reset value is defined
by the generic parameter DESIGN_TIME_STAMP_G[19:16]. If the generic
parameter DESIGN_TIME_STAMP_G is not set, the default value is the one
defined here

Bit 23:20 Sub-Step value according to Step

Bit 27:24 Step value according to Release

Bit 31:28 Release value, used to identify the main release of the XCAN_PRT.

1.5.4.2.1.3 STAT

PRT Status Register

PRT_916

PRT_915

PRT_914

PRT_913

PRT_912

PRT_911

PRT_917

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

259 | 306

Address
Offset:

0x00000008 Initial Value: 0x00000010

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit T
E
C

R
P

R
E
C

T
D

C
V

B
O

E
P

F
IM

A

C
L
K

A

S
T
P

IN
T

A
C

T

Mode R

R

R

R

R

R

R

R

R

R

R

Initial
Value 0

x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x1

0
x0

0
x0

0
x0

Bit 1:0 The current activity of this node:

0b00: inactive state

0b01: Idle

0b10: Receiver

0b11: Transmitter

When the CAN protocol operation is stopped, ACT changes to 0b00 and INT changes
to 0.

When the CAN protocol operation is started, INT is set to 1, but ACT remains at 0b00
until the CAN protocol’s bus idle detection condition is met, then it
changes to 0b01 and INT changes to 0.

When the CAN protocol operation is started while BO is set, the PRT remains in
integrating state (INT=1 and ACT=0b00) until the Bus-Off recovery
sequence is finished, then it changes to 0b01 and INT changes to 0.

When PRT detects a protocol exception event (see [1], chapter 10.9.5), ACT changes
to 0b00 and INT changes to 1 until the CAN protocol’s bus idle detection
condition is met, then ACT changes to 0b01 and INT changes to 0.

ACT changes from 0b01 to 0b10 when the PRT has received a Start-of-Frame from
the CAN bus.

ACT changes from 0b01 to 0b11 when the PRT has sent a Start-of-Frame to the CAN
bus.

ACT changes from 0b11 to 0b10 when the PRT loses arbitration during a
transmission.

ACT changes from 0b10 to 0b01 or from 0b11 to 0b01when the PRT detects the
second bit of intermission (see [1], chapter 10.4.6.2) to be recessive.

Bit 2 This node is integrating into CAN bus traffic

Bit 3 Waiting for end of actual message after STOP command, see Starting and
Stopping The Module chapter

PRT_928

PRT_927

PRT_926

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

260 | 306

Bit 4 The actual value of the CLOCK_ACTIVE input signal, see Starting and
Stopping the Module chapter. As the clock must be active when a reset
is performed, the default value should be 1.

Bit 5 Fault Injection Module Activated, see Safety Measures chapter

Bit 6 This node is in Error-Passive state. When both error counters drop below
127, or when the Bus-Off recovery sequence is finished, the EP bit is
cleared.

Bit 7 This node is in Bus-Off state. This flag is set on an error condition that
would have caused an increment of the Transmit Error Counter to a value
beyond its 8 bit range. When the PRT enters Bus-Off state, BO is set to 1
and CAN protocol operation is stopped. When the Bus-Off recovery
sequence is finished, BO is cleared.

Bit 15:8 Transmitter Delay Compensation’s delay value. A software reset clears
the TDV bit field to 0x00. This register shows the sum of the measured
delay plus the configured offset, giving the position of the secondary
sample point. It is updated for each frame transmission that includes a
data phase.

Bit 22:16 The CAN protocol’s Receive Error Counter. A software reset does not
change the value in this register. When the Bus-Off recovery sequence is
finished, the error counter REC is cleared. The REC is a 7-bit-counter,
together with the Error-Passive flag EP. When the increment REC+1 or
REC+8 would result in a value > 127 (carry-flag), the REC is kept
unchanged, but EP is set. When EP is set but REC is below 127 and
further errors are detected with an REC+1 condition, the REC will be
incremented until it reaches 127. At the reception of a valid message, the
REC-1 decrements the actual value of the REC by one AND clears the
Error-Passive flag EP.

Bit 23 The Passive flag of the CAN protocol’s Receive Error Counter. This flag is
set on an error condition that would have caused an increment of the
Receive Error Counter to a value beyond its 7 bit range.

Bit 31:24 The CAN protocol’s Transmit Error Counter. A software reset does not
change the value in this register. When the Bus-Off recovery sequence is
finished, the error counter TEC is cleared. When the increment TEC+8
would result in a value > 255 (carry-flag), the TEC is kept unchanged, but
BO is set. The Transmit Error Counter is decremented by one each time a
CAN message has been successfully transmitted, but it is not
decremented below the value 0.

1.5.4.2.2 event

REGISTER DESCRIPTION: Event information of the PRT

SIZE:

Register Base Address: 0x20

PRT_925

PRT_924

PRT_923

PRT_922

PRT_921

PRT_920

PRT_919

PRT_918

PRT_929

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

261 | 306

Register Address Range: 0x20

1.5.4.2.2.1 EVNT

Event Status Flags Register

The EVNT Register contains event status flags. The flags are set by the PRT when specific events

occur. A software reset clears all flags. A host write access to this register, writing a 1 to a specific

flag, clears that flag. When a host write access occurs concurrently with a set condition for a flag, the

flag is set.

Address
Offset:

0x00000000 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit

A
B

O

IF
R

U
S

O

D
U

P
X
E

T
X
F

R
X
F

D
O

S
T
E

F
R

E

A
K

E

B
1
E

B
0
E

C
R

E

Mode

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

Initial
Value

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

Bit 0 CRC Error

Bit 1 Bit0 Error: The PRT wanted to send a dominant bit (logical value 0), but
the monitored CAN bus value was recessive. During Bus-Off recovery,
B0E is also set each time a sequence of 11 recessive bits has been
monitored, enabling the CPU to readily check whether the CAN bus is
stuck at dominant or continuously disturbed, and to monitor the
proceeding of the Bus-Off recovery sequence.

Bit 2 Bit1Error: During the transmission of a message (with the exception of
the arbitration field), the PRT wanted to send a recessive bit (logical
value 1), but the monitored CAN bus value was dominant.

Bit 3 Acknowledge Error

Bit 4 Form Error or the condition of CAN error counting rule f)

Bit 5 Stuff Error

Bit 6 Overflow condition in RX_MSG sequence detected

Bit 7 Frame received

Bit 8 Frame transmitted

Bit 9 Protocol Exception Event occurred

Bit 10 Underrun condition in TX_MSG sequence detected

Bit 11 Unexpected Start of Sequence during TX_MSG sequence detected

Bit 12 Invalid Frame Format requested in TX_MSG

Bit 13 TX_MSG sequence stopped by TX_MSG_WUSER code ABORT

PRT_930

PRT_944

PRT_943

PRT_942

PRT_941

PRT_940

PRT_939

PRT_938

PRT_937

PRT_936

PRT_935

PRT_934

PRT_933

PRT_932

PRT_931

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

262 | 306

1.5.4.2.3 control

REGISTER DESCRIPTION: Control of the PRT during runtime

SIZE:

Register Base Address: 0x40

Register Address Range: 0x20

1.5.4.2.3.1 LOCK

Unlock Sequence Register

Writing a sequence of specific data words enables the activation of control commands in the registers

CTRL and FIMC. Reading this register always gives the value 0x00000000.

Address
Offset:

0x00000000 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit

T
M

K

U
L
K

Mode W

W

Initial
Value 0

x0

0
x0

Bit 15:0 Unlock Key

Bit 31:16 Test Mode Key

1.5.4.2.3.2 CTRL

Control Register

Writing to this register controls the CAN protocol operation. Reading this register gives the value

0x00000000.

When writing to this register, only one of the four bits TEST, SRES , STRT, or STOP may be written to

1, otherwise the write access takes no effect. The bit IMMD may be written to 1 together with the bit

STOP, but not together with one of the other bits.

PRT_945

PRT_946

PRT_948

PRT_947

PRT_949

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

263 | 306

Address
Offset:

0x00000004 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit

T
E
S

T

S
R

E
S

S
T
R

T

IM
M

D

S
T
O

P

Mode W
 W
 W
 W

W

Initial
Value

0
x0

0
x0

0
x0

0
x0

0
x0

Bit 0 Stop CAN protocol operation. The Unlock Key must be used prior to write
to this bit field. When not set together with bit IMMD the PRT waits for
an ongoing CAN message to finish before stopping CAN protocol
operation.

Bit 1 Stop CAN protocol operation immediately. The Unlock Key must be used
prior to write to this bit . This bit is only effective when being set
together with the bit STOP.

Bit 4 Start CAN protocol operation.

Bit 8 Software Reset. When the CAN protocol operation is stopped, the
software reset of all state machines of the PRT (excluding the error-
counters and the error-states) is triggered by writing 1 to CTRL.SRES. No
unlocking sequence is required. A software reset will not be executed
while the CAN protocol operation is started.

Bit 12 Enable Test Mode. The Test Mode Key must be used prior to write to this
bit field.

1.5.4.2.3.3 FIMC

Fault Injection Module Control Register

Writing the fault injection position number requires the application of the test mode key sequence

before writing to FIMC. This register must be accessed in privileged mode when supported.

PRT_954

PRT_953

PRT_952

PRT_951

PRT_950

PRT_955

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

264 | 306

Address
Offset:

0x00000008 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit

F
IP

Mode

R
W

Initial
Value

0
x0

Bit 14:0 Fault Injection Position. Writing to FIMC while MODE.FIME is set
activates the Fault Injection Module FIM (see Safety Measures chapter).
While the FIM is activated, the value of FIMC.FIP is protected from
further write accesses until the FIM is de-activated again.

1.5.4.2.3.4 TEST

Hardware Test Functions Register

This register is writable after the hardware test mode functions are enabled by writing the test mode

key sequence to LOCK and CTRL registers. While the hardware test mode functions are not enabled,

this register is read-only. This register must be accessed in privileged mode when supported. The

hardware test mode functions are disabled and cleared by the software reset of the PRT.

Address
Offset:

0x0000000c Initial Value: 0x00000008

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit

B
U

S
_O

F
F

B
U

S
_O

N

E
_P

A
S

S
IV

E

E
_A

C
T
IV

E

B
U

S
_E

R
R

R
X
_E

V
T

T
X
_E

V
T

IF
F
_R

Q

R
X
_D

O

T
X
_D

U

U
S

O
S

A
B

O
R

T
E
D

H
W

T

T
X
C

R
X
D

L
B

C
K

Mode W

W

W

W

W

W

W

W

W

W

W

W

R

R
W

R

R
W

Initial
Value

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x1

0
x0

Bit 0 Enable the Message Loop-Back mode, see chapter Trace and Debug.

Bit 3 Bit value seen at CAN_RX. The CAN_RX input (output signal of the
transceiver) is always readable through this bit.

Bit 5:4 Control the bit value driven at CAN_TX

0b00: Normal function of CAN TX

PRT_956

PRT_957

PRT_973

PRT_972

PRT_971

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

265 | 306

0b01: Normal function of CAN TX. CAN RX is ignored (for message look back mode)

0b10: CAN TX output set to 0

0b11: CAN TX output set to 1

Bit 15 This status flag HWT shows whether the hardware test mode functions
are enabled, set to 1 means enable.

Bit 16 Writing a 1 to the bit field triggers the related interrupt line, this bit is
auto-cleared

Bit 17 Writing a 1 to the bit field triggers the related interrupt line, this bit is
auto-cleared

Bit 18 Writing a 1 to the bit field triggers the related interrupt line, this bit is
auto-cleared

Bit 19 Writing a 1 to the bit field triggers the related interrupt line, this bit is
auto-cleared

Bit 20 Writing a 1 to the bit field triggers the related interrupt line, this bit is
auto-cleared

Bit 21 Writing a 1 to the bit field triggers the related interrupt line, this bit is
auto-cleared

Bit 22 Writing a 1 to the bit field triggers the related interrupt line, this bit is
auto-cleared

Bit 23 Writing a 1 to the bit field triggers the related interrupt line, this bit is
auto-cleared

Bit 24 Writing a 1 to the bit field triggers the related interrupt line, this bit is
auto-cleared

Bit 25 Writing a 1 to the bit field triggers the related interrupt line, this bit is
auto-cleared

Bit 26 Writing a 1 to the bit field triggers the related interrupt line, this bit is
auto-cleared

Bit 27 Writing a 1 to the bit field triggers the related interrupt line, this bit is
auto-cleared

1.5.4.2.4 configuration

REGISTER DESCRIPTION: Configuration of the PRT before runtime

SIZE:

Register Base Address: 0x60

Register Address Range: 0x20

1.5.4.2.4.1 MODE

Operating Mode Register

Configuration register that is writable while the CAN communication is stopped and that is read-only

after the CAN communication is started. This register defines separate operating mode options. The

PRT_970

PRT_969

PRT_968

PRT_967

PRT_966

PRT_965

PRT_964

PRT_963

PRT_962

PRT_961

PRT_960

PRT_959

PRT_958

PRT_974

PRT_975

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

266 | 306

four configuration bits FDOE, XLOE, EFDI, and XLTR, are interrelated according to table Frame

Formats defined in Operating Mode chapter.

Address
Offset:

0x00000000 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit

F
IM

E

E
F
D

I

X
L
T
R

S
F
S

R
S

T
R

M
O

N

T
X
P

E
F
B

I

P
X
H

D

T
D

C
E

X
L
O

E

F
D

O
E

Mode

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

Initial
Value

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

Bit 0 FD Frame Format enabled. When set to 1, node is FD enabled according
to ISO11898-1:2015. When set to 0, node is FD tolerant according to
ISO11898-1:2015 (only Classical CAN frames used). This bit cannot be
set to 1 when the static input ONLY_CC is set.

Bit 1 XL Frame Format enabled. When set to 0, node behaves according to
ISO11898-1:2015, no arbitration during FDF bit. When set to 1, node
behaves according to CiA610-1, arbitration during FDF bit and XLF bit.
This bit cannot be set to 1 when one of the static inputs ONLY_CC or
ONLY_CC_FD is set. Setting XLOE without setting FDOE is an invalid
configuration.

Bit 2 Transmitter Delay Compensation Enabled as defined in [1]

Bit 3 Protocol Exception Handling Disabled

Bit 4 Edge Filtering during Bus Integration. If this bit is set, the PRT requires
two consecutive dominant to to detect an edge causing the reset of the
bit counter for the detection of the idle condition.

Bit 5 Transmit Pause. If this bit is set, the PRT pauses for two CAN bit times
before starting the next transmission after itself has successfully
transmitted a frame

Bit 6 Monitoring Mode Enabled as defined in [1]

Bit 7 Restricted Mode Enabled as defined in [1]

Bit 8 Time stamp position: Start of Frame Stamping

1: Timestamps captured at the start of a frame

0: Timestamps captured at the end of a frame

Bit 9 XL Transceiver Connected

Bit 10 Error Flag Disable, 1 means Error Signalling is disabled as defined in [2]
and the error counters REC and TEC are not incremented. When this bit

PRT_987

PRT_986

PRT_985

PRT_984

PRT_983

PRT_982

PRT_981

PRT_980

PRT_979

PRT_978

PRT_977

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

267 | 306

is set, only CAN XL frames are transmitted and received dominant FDF or
XLF bits are treated as form errors.

Bit 11 Fault Injection Module Enable, see Safety Measures chapter

1.5.4.2.4.2 NBTP

Arbitration Phase Nominal Bit Timing Register

Configuration register that is writable while the CAN communication is stopped and that is read-only

after the CAN communication is started. This register defines the Nominal Bit Timing as defined in [1].

Address
Offset:

0x00000004 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit

B
R

P

N
T
S

E
G

1

N
T
S

E
G

2

N
S

J
W

Mode

R
W

R
W

R
W

R
W

Initial
Value

0
x0

0
x0

0
x0

0
x0

Bit 6:0 Nominal SJW. Valid values for the Nominal Synchronization Jump Width
NSJW are 0x00-0x7F. The actual interpretation of this value is that the
Nominal Synchronization Jump Width is (NSJW + 1) TQ long.

Bit 14:8 Nominal Phase_Seg2. Valid values for NTSEG2 are 0x01-0x7F. This value
defines the length of Phase_Seg2(N). The actual interpretation of this
value is that the phase buffer segment 2 is (NTSEG2 + 1) TQ long.

Bit 24:16 Nominal Prop_Seg and Phase_Seg1. Valid values for NTSEG1 are 0x01-
0x1FF. This value defines the sum of Prop_Seg(N) and Phase_Seg1(N).
The actual interpretation of this value is that these segments together are
(NTSEG1 + 1) TQ long.

Bit 29:25 Bit Rate Prescaler. Valid values for the Bit Rate Prescaler BRP are 0x00-
0x1F. This value defines the length of the Time Quantum TQ for all three
bit time configurations. The actual interpretation of this value is that the
TQ is (BRP + 1) CLK periods long

1.5.4.2.4.3 DBTP

CAN FD Data Phase Bit Timing Register

Configuration register that is writable while the CAN communication is stopped and that is read-only

after the CAN communication is started. This register defines the FD Data Phase Bit Timing as defined

in [1].

PRT_976

PRT_988

PRT_992

PRT_991

PRT_990

PRT_989

PRT_993

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

268 | 306

Address
Offset:

0x00000008 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit
D

T
D

C
O

D
T
S

E
G

1

D
T
S

E
G

2

D
S

J
W

Mode R
W

R
W

R
W

R
W

Initial
Value 0

x0

0
x0

0
x0

0
x0

Bit 6:0 FD data phase SJW. Valid values for the FD data phase Synchronization
Jump Width DSJW are 0x00-0x7F. The actual interpretation of this value
is that the FD data phase Synchronization Jump Width is (DSJW + 1) TQ
long.

Bit 14:8 FD data phase Phase_Seg2. Valid values for DTSEG2 are 0x01-0x7F. This
value defines the length of Phase_Seg2(D). The actual interpretation of
this value is that the phase buffer segment 2 is (DTSEG2 + 1) TQ long.

Bit 23:16 FD data phase Prop_Seg and Phase_Seg1. Valid values for DTSEG1 are
0x00-0xFF. This value defines the sum of Prop_Seg(D) and
Phase_Seg1(D). The actual interpretation of this value is that these
segments together are (DTSEG1 + 1) TQ long

Bit 31:24 Transmitter Delay Compensation Offset for FD frames. Valid values for
the FD Transmitter Delay Compensation Offset DTDCO is 0x00-0xFF. This
configuration defines the distance between the measured delay from
CAN_TX to CAN_RX and the secondary sample point SSP, measured in
CLK periods. This value is used when transmitting a CAN FD frame

1.5.4.2.4.4 XBTP

CAN XL Data Phase Bit Timing Register

Configuration register that is writable while the CAN communication is stopped and is read-only after

the CAN communication is started. This register defines the XL Data Phase Bit Timing as defined in

[2].

PRT_997

PRT_996

PRT_995

PRT_994

PRT_998

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

269 | 306

Address
Offset:

0x0000000c Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit
X
T
D

C
O

X
T
S

E
G

1

X
T
S

E
G

2

X
S

J
W

Mode R
W

R
W

R
W

R
W

Initial
Value 0

x0

0
x0

0
x0

0
x0

Bit 6:0 XL data phase SJW. Valid values for the XL data phase Synchronization
Jump Width XSJW are 0x00-0x7F. The actual interpretation of this value
is that the XL data phase Synchronization Jump Width is (XSJW + 1) TQ
long

Bit 14:8 XL data phase Phase_Seg2. Valid values for XTSEG2 are 0x01-0x7F. This
value defines the length of Phase_Seg2(X). The actual interpretation of
this value is that the phase buffer segment 2 is (XTSEG2 + 1) TQ long

Bit 23:16 XL data phase Prop_Seg and Phase_Seg1. Valid values for XTSEG1 are
0x00-0xFF. This value defines the sum of Prop_Seg(X) and
Phase_Seg1(X). The actual interpretation of this value is that these
segments together are (XTSEG1 + 1) TQ long

Bit 31:24 Transmitter Delay Compensation Offset for XL frames. Valid values for
the XL Transmitter Delay Compensation Offset XTDCO is 0x00-0xFF. This
configuration defines the distance between the measured delay from
CAN_TX to CAN_RX and the secondary sample point SSP, measured in
CLK periods. This value is used when transmitting a CAN XL frame.

1.5.4.2.4.5 PCFG

PWME Configuration Register

Configuration register that is writable while the CAN communication is stopped and is read-only after

the CAN communication is started. This register defines the parameters needed for the PWM coding

(as described in [2]) in the PWME module for CAN XL transceivers with switchable operating modes

PRT_1002

PRT_1001

PRT_1000

PRT_999

PRT_1003

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

270 | 306

Address
Offset:

0x00000010 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit

P
W

M
O

P
W

M
L

P
W

M
S

Mode

R
W

R
W

R
W

Initial
Value

0
x0

0
x0

0
x0

Bit 5:0 PWM phase Short

Bit 13:8 PWM phase Long

Bit 21:16 PWM Offset

1.5.5 Functional Description

The PRT does provide several interrupt outputs that signal, with a high-pulse of one CLK period

length, the occurrence of specific internal events. For test purposes, the TEST register has a Generate

Interrupt Pulse function GIP so that in hardware test mode HWT an interrupt output pulse can also be

triggered by writing a 1 to the corresponding TEST register bit.

Interrupt TEST bit Activated when

BUS_OFF 27 Entering Bus_Off State

BUS_ON 26 Starting CAN communication, after Starting or end of Bus_Off

E_PASSIVE 25 Switching from Error-Active to Error-Passive

E_ACTIVE 24 Switching from Error-Passive to Error-Active

BUS_ERR 23 Error detected on CAN bus or Protocol Exception Event detected

RX_EVT 22 Received a valid message

TX_EVT 21 Successfully transmitted a message

IFF_RQ 20 MH Requests a Message with Invalid Frame Format in Header

RX_DO 19 Data Overflow condition in RX_MSG sequence detected

TX_DU 18 Data Underrun condition in TX_MSG sequence detected

USOS 17 Unexpected Start of Sequence during TX_MSG sequence detected

ABORTED 16 TX_MSG sequence stopped by TX_MSG_WUSER code ABORT

The PRT outputs internal status information, optionally to be connected to a hardware debug port

SAMPLE_POINT: This is the CAN Sample Point

STAT_ACT: This is the actual 2-bit-value of register STAT.ACT (see register description)

PRT_1006

PRT_1005

PRT_1004

PRT_203

PRT_1008

PRT_1114

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

271 | 306

1.5.5.1 PRT static configuration

The two inputs ONLY_CC and ONLY_CC_FD are intended to be connected to static signals (either hard-

wired or OTP), thereby permanently restricting the PRT’s function to older versions of the CAN

protocol, see also [1].

The function of the PRT is restricted to the Classical CAN frame format (CAN FD tolerant

implementation of ISO 11898-1:2015) when ONLY_CC = 1 or when the configuration bit MODE.FDOE

is not set by the host.

The function of the PRT is restricted to the frame formats Classical CAN and CAN FD (full

implementation of ISO 11898-1:2015) when ONLY_CC_FD = 1 or when the configuration bit

MODE.XLOE is not set by the host.

With the exception of MODE.XLOE and MODE.FDOE, ONLY_CC and ONLY_CC_FD have no impact on

the behavior of the other configuration registers.

They can change MODE.XLOE and MODE.FDOE to read-only.

- ONLY_CC = 1 means MODE.FDOE=0 and is not writable by Software

 MODE.XLOE=0 and is not writable by Software

- ONLY_CC_FD = 1 means MODE.XLOE=0 and is not writable by Software

1.5.5.2 Software Reset

The software reset is triggered by writing 1 to CTRL.SRES when the CAN protocol operation is

stopped. This does not require an unlocking sequence. The software reset must not be executed when

CTRL.SRES is written while the CAN protocol operation is started. The software reset resets all state

machines of the PRT (excluding the error-counters and the error-states) and clears the following

readable registers: STAT.TDCV, STAT.FIMA, FIMC.FIP, TEST.HWT, TEST.TXC, TEST.LBCK, and all flags

of EVNT. The configuration registers are not changed by a software reset.

1.5.5.3 Operating Mode

The operating mode is defined using the MODE register and only when the CAN communication is

stopped, otherwise the register is read only. The register MODE defines separate operating mode

options.

The four configuration bits FDOE, XLOE, EFDI, and XLTR, and are interrelated according to the table

below.

Table: Frame Formats

FDO
E

XLOE XLTR EFDI Description

PRT_204

PRT_205

PRT_206

PRT_1116

PRT_210

PRT_211

PRT_212

PRT_213

PRT_214

PRT_215

PRT_216

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

272 | 306

0 0 X 0

Operating only in Classical CAN frame format. When FDOE is not set, the PRT shall be restricted to
the Classical CAN frame format. In this case, when PXHD is set, the PRT shall accept both recessive
and dominant bits as received reserved bits. When PXHD is not set, the PRT shall treat a recessive
received first reserved bit as a Protocol Exception condition and shall enter the Protocol Exception
State as defined in [1] and it shall set the flag EVNT.PXE. FDOE shall be static at 0 while the input
signal ONLY_CC is 1.

0 1 X X Invalid configuration

0 X X 1 Invalid configuration

X 0 X 1 Invalid configuration

1 0 X 0

Operating in Classical CAN and CAN FD frame format. When FDOE is set, the PRT shall be able to
transmit and to receive Classical CAN frames and CAN FD frames as defined in [1]. When XLOE is
not set, the PRT shall not be able to transmit or to receive CAN XL frames as defined in [2]. When
FDOE is set but not XLOE, PXHD defines the PRT’s reaction on a recessive reserved bit following
the recessive FDF bit in a CAN FD frame. In this case, when PXHD is set, the PRT shall treat this
condition as a Form Error. When PXHD is not set, the PRT shall treat this condition as a Protocol
Exception condition and shall enter the Protocol Exception State as defined in [1] and it shall set the
flag EVNT.PXE. XLOE shall be static at 0 while the input signals ONLY_CC_FD or ONLY_CC are at
1.

1 1 0 0

Operating in all frame formats, without XL transceiver. When FDOE and XLOE are both set and EFDI
is not set, the PRT shall be able to transmit and to receive Classical CAN frames and CAN FD frames
as defined in [1] and it shall be able to transmit and to receive CAN XL frames as defined in [2]. When
both FDOE and XLOE are set, PXHD defines the PRT’s reaction on a recessive reserved bit following
the recessive XLF bit in a CAN XL frame. In this case, when PXHD is set, the PRT shall treat this
condition as a Form Error. When PXHD is not set, the PRT shall treat this condition as a Protocol
Exception condition and shall enter the Protocol Exception State as defined in [2] and it shall set the
flag EVNT.PXE. When EFDI is not set, the PRT shall send error flags as defined in [1].

1 1 0 1
Operating in XL frame format only, without XL transceiver, error frames are disabled for all
communication. It shall be an invalid configuration to set EFDI without setting both FDOE and XLOE.
When XLTR is not set, the PRT shall not control the operating mode of the transceiver.

1 1 1 0 Invalid configuration

1 1 1 1

Operating in XL frame format only, enabling XL transceiver, error frames are disabled for all
communication. When XLTR is set together with FDOE and XLOE, the PRT shall control the PWME
to the transceiver in order to switch the operating mode of the transceiver at the beginning and at the
end of the CAN XL data phase, as defined in [2]. When EFDI is set together with FDOE and XLOE,
the PRT shall not send error flags and it shall not change its transmit error counter or its receive error
counter. When an error condition occurs, the PRT shall, instead of sending an error flag, enter
Protocol Exception State, like in Restricted Mode, as defined in [2].

1.5.5.4 Starting and Stopping the Module

The PRT is started by writing 1 to CTRL.STRT. This does not require an unlocking sequence. After the

start command, the PRT waits for the occurrence of a sequence of 11 consecutive recessive bits (the

idle condition of ISO 11898-1:1995) to finish its integration into the CAN communication on the CAN

bus line. When the PRT has detected the idle condition and has no pending transmission request, it

switches into idle state. When the PRT has detected the idle condition and has a pending transmission

request, the PRT starts the transmission in the following bit. When the PRT sees a dominant bit on

entering idle state, it immediately becomes receiver of that frame.

There are two options to stop the CAN protocol operation under software control, one that waits for

the completion of an ongoing message transfer and one that stops the operation immediately.

The two options use different variants of the CTRL.STOP command. In the first variant, only the STOP

bit is written to 1. In the second variant, both the CTRL.STOP bit and the CTRL.IMMD bit are written

to 1 at the same time. Both variants require the application of the unlock key sequence, followed by a

PRT_217

PRT_219

PRT_220

PRT_221

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

273 | 306

write access to the CTRL register. The three consecutive write accesses may not be interrupted by

other accesses via REG_AXI.

The first variant of the STOP command is asserted this way:

Step Write data to Register at Address

1: Write 0x1234 to LOCK.ULK 0x40

2: Write 0x4321 to LOCK.ULK 0x40

3: Write 1 to CTRL.STOP 0x44

The PRT’s reaction to the first variant of the STOP command depends on its current activity

(STAT.ACT). When the current activity of this node is Idle, it switches its activity to its inactive state

immediately and stop all CAN operation. When the current activity is either Receiver or Transmitter, it

continues that activity, and it sets the status flag STAT.STP to show that it is waiting for end of the

actual message after a CTRL.STOP command. If no TX_MSG sequence is already started, the PRT

clears TX_MSG_WREADY and keep it cleared until all CAN operation is stopped. As soon as the current

reception or transmission is finished (either successfully or in failure) the PRT reports the result of

that transfer to the MH, clears the status flag STAT.STP, clears ENABLE, switches its activity to its

inactive state, and stops all CAN operation. The PRT does not start another reception or transmission

until it is started again.

The second variant of the STOP command is asserted this way:

Step Write data to Register at Address

1: Write 0x1234 to LOCK.ULK 0x40

2: Write 0x4321 to LOCK.ULK 0x40

3: Write 1 to CTRL.IMMD and 1 to CTRL.STOP 0x44

4: Write 1 to CTRL.SRES 0x44

The PRT’s reaction to the second variant of the STOP command is to switch its activity to its inactive

state immediately, to stop all CAN operation, and to set its CAN_TX output to 1 and to clear ENABLE.

When the current activity was Transmitter, the PRT aborts that transmission. When the current activity

was Receiver, it aborts that reception. Both interfaces with the MH are reset, outstanding transactions

are discontinued. If this happens while an RX_MSG sequence was ongoing, this sequence is

discontinued with the ABORT code. The PRT does not start another reception or transmission until it

is started again.

The CAN protocol operation stops automatically on the following conditions:

• When the node enters the CAN protocol’s Bus-Off state

• Unexpected Start of Sequence transaction during TX_MSG sequence detected

Note: Detecting an Unexpected Start of Sequence (USOS) indicates a mis-synchronization between

PRT and MH that requires a restart.

When the CAN protocol operation is stopped, it is started by writing 1 to CTRL.STRT. This does not

require an unlocking sequence.

PRT_222

PRT_223

PRT_224

PRT_225

PRT_226

PRT_227

PRT_228

PRT_229

PRT_230

PRT_231

PRT_232

PRT_1113

PRT_233

PRT_235

PRT_238

PRT_239

PRT_1098

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

274 | 306

When the CAN protocol operation was stopped because the PRT entered the CAN Bus_Off state, the

start command (writing 1 to CTRL.STRT) causes the PRT to perform the CAN Bus_Off Recovery

Sequence before it is again able to participate in CAN communication.

The CAN Bus_Off Recovery Sequence (see ISO 11898-1:2015) cannot be shortened by starting or

stopping the PRT. If the PRT goes Bus_Off, it will set STAT.BO bit and it will, of its own accord, stop

all bus activities. Once the PRT has been started again, the PRT clears STAT.TEC, STAT.RP, STAT.REC,

and STAT.EP but it will keep STAT.BO.

The PRT will then wait for 129 occurrences of Bus Idle (129 * 11 consecutive recessive bits) before

resuming normal operation. The PRT uses the Receive Error Counter (STAT.REC) to count the

occurrences of Bus Idle. Additionally, each time a sequence of 11 recessive bits has been monitored, a

Bit0 Error (EVNT.B0E) is reported, enabling the host to readily check-up whether the CAN bus is stuck

at dominant or continuously disturbed and to monitor the progress of the Bus_Off recovery sequence.

When the last-but-one sequence of 11 recessive bits has been monitored, STAT.RP, and STAT.EP are

set and STAT.REC is at 0x7F. When the last sequence of 11 recessive bits has been monitored, the

end of the Bus_Off recovery sequence is reached and STAT.TEC, STAT.RP, STAT.REC, STAT.EP and

STAT.BO will all be reset. The PRT switches into idle state.

1.5.5.5 Reaction on Exceptions at the TX_MSG and RX_MSG Interfaces

1.5.5.5.1 MH Requests a Message with Invalid Frame Format in Header

This is detected when the requested transmit frame format is disabled in the configuration register

(see MODE.FDOE, MODE.EFDI, or MODE.XLOE) or there is an internal contradiction in the header

content of that frame. On the detection of this condition, the PRT ends the TX_MSG sequence with the

response code HFI, generate a pulse on the IFF_RQ interrupt output and it does not transmit that

message.

1.5.5.5.2 MH Intentionally Aborts TX_MSG Sequence

If the ABORT command is given with the second transaction of the TX_MSG sequence, the PRT does

not start the transmission. If the ABORT command is given after the second transaction of the TX_MSG

sequence, the PRT sets an internal flag that causes the FCRC bits of that transmission to be

transmitted inverted. This internal flag is cleared at the end of the transmission. In both cases, the

PRT generates a pulse on the ABORTED interrupt output and the ongoing TX_MSG sequence is

finished.

1.5.5.5.3 Data Underrun Condition in TX_MSG Sequence Detected

This is detected when the ongoing transmission on the CAN bus needed another TX_MSG data word

but that word was not provided in time. On the detection of this condition, the PRT continues the

transmission (to avoid disturbing the message schedule on the CAN bus), but the PRT generates a

PRT_1100

PRT_240

PRT_241

PRT_242

PRT_243

PRT_244

PRT_245

PRT_246

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

275 | 306

pulse on the TX_DU interrupt output and the PRT sets an internal flag that causes the FCRC bits of

that transmission to be transmitted inverted (to avoid the acceptance of a message containing invalid

data). This internal flag is cleared at the end of the transmission. In case of a Data Underrun, the

ongoing TX_MSG sequence finishes with the code DU when the MH transfers the missing data word.

After the end of the transmission, TX_MSG_WREADY is asserted again to accept the following TX_MSG

Sequence (starting again with W0).

1.5.5.5.4 Unexpected Start of Sequence Detected

This is detected when the PRT receives a TX_MSG transaction marked as Start of Sequence before a

previously started TX_MSG sequence has ended. This indicates that MH and PRT operate out-of-phase.

On the detection of this condition, the PRT generates a pulse on the USOS interrupt output and the

PRT stops CAN protocol operation. Afterwards, the PRT needs to be restarted under software control

by writing 1 to CTRL.STRT.

1.5.5.5.5 Data Overflow Condition in RX_MSG Sequence Detected

This is detected when, during an ongoing reception, the MH has not acknowledged an RX_MSG data

word in time. On the detection of this condition, the PRT generates a pulse on the RX_DO interrupt

output and the PRT ends such an RX_MSG sequence via a subsequent transfer with code DO. This

transfer with code DO must be acknowledged by the MH before the PRT can start a new RX_MSG

sequence.

1.5.5.6 Controlling the Module’s Clock Input

The PRT has two clock inputs, CLK and CLK_AXI. CLK is the clock input of the PRT excluding its

REG_AXI interface, while CLK_AXI is the clock input of the PRT’s REG_AXI module. Both clocks are

synchronous to each other, driven from the same source. The difference between the two clocks is

that CLK_AXI must be always active (to keep the REG_AXI interface operational), but CLK may be

switched off (gated) while the PRT is stopped, e.g., when no CAN communication is needed.

The recommended clock frequency for CAN XL operation is 160 MHz.

The recommended clock frequency for CAN FD operation only is 80 MHz.

The function of the PRT does not depend on a particular duty-cycle of the clock, i.e., it reacts only on

rising clock edges. The duration of the clock high pulse may vary between 10% and 90% of the clock

period during operation.

The PRT’s input signal CLOCK_ACTIVE shows whether the clock input CLK of the PRT is active. The

actual value of the CLOCK_ACTIVE input signal is always readable from the status bit STAT.CLKA, even

when CLK is not active. The signal CLOCK_ACTIVE does not control the PRT’s function, it provides

only status information, coming from a clock multiplexer outside of the PRT.

PRT_247

PRT_248

PRT_249

PRT_250

PRT_251

PRT_252

PRT_253

PRT_254

PRT_255

PRT_256

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

276 | 306

While CLK is not active, the PRT has no function and cannot be started. CLK must be reactivated

before the PRT needs to be started again.

1.5.5.7 Transceiver Interface

The CAN bus is usually implemented as a twisted-pair bus line, its bus wires called CAN_H and CAN_L.

An analog CAN transceiver device is connected to the CAN bus, interfacing between the bidirectional

CAN bus wires and the CAN protocol controller’s unidirectional, digital serial input and output signals.

The future CAN XL transceivers will need to switch between two operating modes during the

transmission of a CAN XL message. The switching control is coded into signals between protocol

controller and transceiver. The coding is implemented inside a separate, dedicated PWME module that

is placed between protocol controller and transceiver, see figure PRT Block Diagram.

The transceiver’s RxD output is connected to the PRT’s CAN_RX input. This asynchronous input signal

is synchronized to the CAN clock by routing it through two synchronizer-FFs. This delay of two clock

cycles is part of the input delay for the calculation of the propagation segment length of the CAN bit

time. The CAN bit time configuration is only functional if the following conditions are fulfilled:

a) ((NTSEG1+1) x (BRP x CLK_period)) is larger than the transmitter loop delay

b) ((DTSEG1+1) x (BRP x CLK_period)) and ((XTSEG1+1) x (BRP x CLK_period)) are larger than the

transmitter loop delay or transmitter delay compensation is enabled.

The connection from the PRT to the transceiver is routed through the PWME module (Pulse Width

Modulation Encoder, specified in [2]). In CAN XL communication using a transceiver with switchable

operating modes, the PWME controls the operating mode of the transceiver, to switch it into the CAN

XL data phase modes for transmissions as well as receptions and back. The PWME_CFG configuration

data consists of PCFG.PWMO, PCFG.PWML, and PCFG.PWMS, it is an 18-bit vector concatenating the

three 6-bit vectors from PCFG.PWMO[5] down to PCFG.PWMS[0]. The appropriate switching times

are signaled by the PRT via its outputs XLT (see [2], chapter 7.2.4), D_TX (see [2], chapter 7.2.5) and

D_RX (see [2], chapter 7.2.6).

The PWME function is controlled by the following outputs of the PRT: PWME_CFG, XLT, D_TX, D_RX,

and CAN_TX.

1.5.5.8 Hardware Timestamping

1.5.5.8.1 Timestamping Function

Timestamps are captured for each transmitted or received message, captured at either the sample

point of the start of frame bit of the message or at the sample point of the bit when the message

becomes valid at the end of the frame. The capture position is defined by the configuration bit

MODE.SFS.

PRT_257

PRT_258

PRT_259

PRT_260

PRT_261

PRT_262

PRT_288

PRT_289

PRT_290

PRT_300

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

277 | 306

1.5.5.9 Trace and Debug

The hardware test mode functions are disabled by the software reset of the PRT. The status flag

TEST.HWT shows whether the hardware test mode functions are enabled.

When the hardware test mode functions are disabled, all bits of TEST are cleared with the exception

of RXD.

Enabling the hardware test mode functions (see chapter “Hardware Test Functions”) requires the

application of the test mode key sequence. The test mode key sequence consists of three consecutive

write accesses, not interrupted by other accesses via REG_AXI:

Step Write data to Register at Address

1: Write 0x6789 to LOCK.TMK 0x40

2: Write 0x9876 to LOCK.TMK 0x40

3: Write 1 to CTRL.TEST 0x44

The hardware test mode functions enable the host to directly control the values driven at the

transceiver interface pins, to read the actual transceiver RxD output, and to transmit messages in a

loop-back mode where all transmitted messages are also reported through the RX_MSG interface as

received messages.

The CAN_RX input (output signal of the transceiver) is always readable at RXD

The CAN_TX output control TXC offers four options:

0b00: Normal function of CAN_TX

0b01: Normal function of CAN_TX, CAN_RX is ignored (for message loop-back mode)

0b10: CAN_TX output set to 0 and XLT output set to 0

0b11: CAN_TX output set to 1 and XLT output set to 0

When LBCK is set, the PRT operates in the message loop-back mode. In message loop-back mode, the

PRT reports transmit messages (requested through the TX_MSG interface) via RX_MSG as received

messages. The transmit messages are encoded and decoded bitwise inside the PRT, but a transmitted

message is treated as successfully transmitted even if it does not get ACK. When the host sets LBCK

to 1, it also sets TXC to either 0b01 or to 0b11 to control whether messages transmitted in the

message loop-back mode are visible at the transceiver pins. In the message loop-back mode with TXC

set to a value > 0b00, the actual CAN_RX input (output signal of the transceiver) is ignored by the PRT.

When the host sets TXC=0b11 in the message loop-back mode, the PRT keeps the CAN_TX output at 1

and loops back its internal serial output signal to its internal serial input signal. With this

configuration, the loopback transmission does not disturb a CAN bus system connected to its

transceiver.

When the host sets TXC=0b01 in the message loop-back mode, the PRT drives the frame bits at its

CAN_TX output. In this case, the PRT loops back its internal serial output signal to its internal serial

input signal, so it is not able to perform an arbitration or to react on bit errors on the CAN bus.

If TXC is set as zero b00, the loop-back test may be disturbed by errors on the CAN_RX input.

PRT_301

PRT_302

PRT_303

PRT_304

PRT_305

PRT_306

PRT_307

PRT_308

PRT_309

PRT_310

PRT_311

PRT_312

PRT_313

PRT_314

PRT_315

PRT_316

PRT_317

PRT_1103

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

278 | 306

If TXC is set as 0b01, the loop-back test operates independently from the CAN_RX input, the

Loopback transmission can be monitored at the CAN_TX output.

If TXC is set as 0b11, the loop-back test operates independently from the CAN_RX input, the

Loopback transmission cannot be monitored at the Tx-pin. This is intended for a self-test in the field,

not disturbing the CAN bus.

1.5.6 Application Information

FDF XLF resXL ADH DH1 DH2 DL1 SDT7 SDT6 SDT5 SDT4 ...

Tx

Rx

FDF XLF resXL ADH DH1 DH2 DL1 SDT7 SDT6 SDT5 SDT4

1bit

2bit

3bit

Measured Delay

The Transmitter Loop Delay is measured from the falling edge
between the XLF and resXL bits (FDF to reserved in FD frames);
from the Tx output signal to the (clock-synchronized) Rx input signal.

The position of a bit s Secondary Sample Point SSP is at the sum of
the measured Delay plus the configured TDC-Offset after the begin
of the transmitted bit.

At the SSP, the value of the Rx-bit is compared to the value of the
same Tx-bit, which is preserved in a shift register.

The index of same Tx-bit in the shift register is found by rounding
down the result of the calculation ([Delay + Offset) divided by (length
of data bit)], all measured in clock cycles.

Figure: Overview of Transmitter Delay Compensation

The Transmitter Delay Compensation TDC is needed for applications where the bit rate in the CAN FD

or CAN XL data phase is so high (and therefore the data bit time so short) that the transmitter loop

delay prevents the node from a meaningful bit error check at the Sample-Point.

The transmitter loop delay is the time from the CAN_TX output at the start of the transmitted bit

through (if used) the PWM Encoder, then through the transceiver to the CAN bus and back through

the transceiver to the CAN_RX input and through the input synchronization.

Any two CAN nodes may have a systematic phase-shift to each other by the amount of the sum of the

transmitter loop delay and the bus line delay between the two nodes.

The CAN arbitration mechanism and the acknowledge signaling function require that the time from the

start of a bit at the synchronization segment to the bit's Sample-Point must be at least twice that

systematic phase shift. This defines the required length of the bit's propagation segment. The two

phase-buffer segments and the resynchronization mechanism remain to compensate for the oscillator

frequency differences between the nodes.

In Classical CAN and in arbitration phase bit timing, the propagation segment is necessary and raises

the minimum length of the bit time and therefore limits the achievable bit rate.

PRT_333

PRT_334

PRT_1107

PRT_1108

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

279 | 306

The CAN arbitration mechanism and the acknowledge signaling function are not used in the data

phase of CAN FD or CAN XL, so in that phase no propagation segment is needed. When error signaling

is enabled, the transmitter still needs to check for bit errors while operating in the data phase, this

means that the time from the start of a bit at the synchronization segment to the bit's Sample-Point

must be longer than the transmitter loop delay. For this calculation, the phase-buffer segment before

the Sample-Point is included since here only the bits generated from the node's own local clock are

regarded, no clock tolerances need to be considered.

When the transmitter loop delay is longer than the time from the start of the bit to the Sample-Point,

the TDC mechanism needs to be enabled and the bit error check is then delayed to the time of the

Secondary-Sample-Point, where the delayed input signal has arrived.

As shown in the TDC overview figure, the position of the Secondary-Sample-Point is not inside the

transmitted bit, but inside one of the following Tx-bits. The TDC measures the delay in each

transmitted FD or XL frame before it switches into the data phase. There may be small differences

between successive measurement results due to changes in voltage, temperature, or input

synchronization jitter. The measured delay (green line in the figure) shows the phase shift between

the start of a transmitted bit at the Tx-output to the start of the same bit seen at the Rx-input of the

PRT. The TDC offset (magenta line in the figure) needs to be configured to place the SSP at a position

inside the same bit seen at the Rx-input. When the TDC detects a bit error at the SSP position, this

information will be processed by the PRT at the following regular Sample-Point. The optimum position

of the SSP inside that bit depends on the analyzed properties of the physical layer. The length of the

recessive and the dominant bits may become asymmetric due to signal reflections and the different

driving strengths. When transceivers are used that drive more symmetric signal shapes (e.g., CAN SIC

or CAN SIC XL types), the position of the SSP should be in the middle of the received bit. The TDC

offset configuration must always be below the length of a data-phase bit time.

Usual CAN SIC transceivers have a maximum Tx-input to Rx-output delay of 190ns. Together with a

digital delay of three clock periods, this results in a maximum transmitter loop delay of 209ns (160

MHz clock) or 228ns (80 MHz clock). Other transceivers, especially those including galvanic isolation,

have longer delay times and require TDC even at lower bit rates.

CAN SIC transceivers are specified for bit rates up to 8 MBit/s (125ns bit time). For higher bit rates,

CAN SIC XL transceivers are needed that operate in a dedicated XL mode during the data phase. TDC

is not needed for these higher bit rates because the CAN XL protocol specifies that error signaling,

and bit error checking are disabled when the transceiver is switched into the XL mode. So 125ns is

the shortest bit time to be considered for the TDC mechanism.

At the Secondary-Sample-Point, the TDC mechanism compares the actual value of the Rx-input signal

with a stored value of the Tx-output signal. For this purpose, the TDC stores the last nine transmitted

bits in a shift register. To select the correct shift register cell (or the current Tx-bit), to be compared

to the Rx-input value at the SSP, the TDC divides the SSP position (STAT.TDCV, number of clock

periods after the start of the bit) by the length of one bit time in the data phase (calculated number of

clock periods from the configuration of NBTP.BRP and DBTP or XBTP). This limits the transmitter loop

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

280 | 306

delay that can be compensated to at most 10 bit times. With the shortest bit time of 125ns (8 MBit/s),

this is 1250ns. At 5 MBit/s, the limit is 2000ns.

The second limitation for the maximum loop delay compensation comes from the calculation range.

The TDC operates with a resolution of clock cycles in the range of 8 bit, so the latest SSP position is

255 clock cycles after the start of the Tx-bit, 1593ns (160 MHz clock) or 3187ns (80 MHz clock). The

maximum distance between two SSPs is also 255 clock cycles, so the maximum length of a data phase

bit may not exceed the number 255. When TDC is used, NBTP.BRP must be configured to a value of

0x00 or 0x01.

The length of a CAN FD data bit time is (NBTP.BRP * (DBTP.TSEG1 + DBTP.TSEG2 + 3)) clock cycles.

The length of a CAN XL data bit time is (NBTP.BRP * (XBTP.TSEG1 + XBTP.TSEG2 + 3)) clock cycles.

The CAN XL protocol specification requires that node shall be able to compensate transmitter delays

of at least 95 clock cycles, which is 593,75ns (160 MHz clock) or 1187.5ns (80 MHz clock).

When the transmitter loop delay is indeed at 95 clock cycles (upper range as required by protocol

specification), this results in an upper limit for the configuration range of the TDC offset

(DBTP.DTDCO or XBTP.XTDCO) to the number 160 (255 - 95). In systems with shorter transmitter

loop delays, the TDC offset may be configured to a higher value. The TDC mechanism can compensate

longer transmitter loop delays than 95 clock cycles, as long as the sum of the measured delay and the

configured TDC offset does not exceed the number 255.

1.6 PWME – Pulse Width Modulation Encoder

1.6.1 Overview

PWME is the Pulse Width Modulation Encoder build in the X_CAN.

1.6.2 Features

• PWM encoding as specified in [2]

1.6.3 Block Diagram

Figure “PWME overview” shows the PWME and its interfaces with the CAN XL Protocol Controller and

the CAN transceiver.

PWME_1

PWME_71

PWME_68

PWME_3

PWME_4

PWME_5

PWME_6

PWME_7

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

281 | 306

XCAN_PRT - CAN XL Protocol Controller

CAN_TX

REG AXI

CAN_RX

XLT

D_RX

Protocol
FSM

CDC

TxD

Pulse

Width

Modulation

Encoder

Config / Control / Status Registers

PWME_CFG

D_TX

P
W

M
E

Host To Transceiver

GPIO

Ports

Multibit Signal
Discrete Signal

Figure: PWME overview

1.6.4 Software interface

1.6.4.1 PWME Configuration (PWME_CFG)

The PWME_CFG contains the parameters needed for the PWM encoding (as defined in [2]) in the

PWME module. The PWME_CFG signal may not change its value while the PRT is started, i.e., while

CAN frames can be received and transmitted.

 Bits Config Description

 17:12 PWMO[5:0] PWM Offset

 11:6 PWML[5:0] PWM phase Long

 5:0 PWMS[5:0] PWM phase Short

Valid values for the PWM phase Short PWMS are 0x00-0x3F. The actual interpretation of this value is

that the PWM short phase length is (PWMS + 1) clock cycles long.

Valid values for the PWM phase Long PWML are 0x00-0x3F. The actual interpretation of this value is

that the PWM long phase length is (PWML + 1) clock cycles long.

The PWM symbol length is the sum of PWM short phase length and PWM long phase length (PWMS +

PWML + 2) clock cycles.

Valid values for the PWM Offset PWMO are 0x00-0x3F. PWMO shall always be smaller than the PWM

symbol length (PWMO < PWMS + PWML + 2).

1.6.5 Functional description

PWME_8

PWME_10

PWME_11

PWME_12

PWME_13

PWME_14

PWME_15

PWME_16

PWME_17

PWME_18

PWME_19

PWME_20

PWME_21

PWME_22

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

282 | 306

PWM Logic

CAN_TX

SYMB_CNT [7..0]

TXD

PWME_CFG

XLT,D_TX,D_RX

PWM0_CNT [1..0]

TXD_
PWME

Figure: PWME Block Diagram

PWME implements the PWM encoding as specified in [2]. When transceiver mode switching is

enabled, the PWME encodes the CAN_TX input signal during a CAN XL frame’s data phase and during

ADH bit, to generate the PWM encoded output signal TXD.

The output of the PWM Logic is registered by the Flip Flop TXD_PWME.

An active Reset sets this Flip Flop TXD_PWME to one.

All Flip Flops in the PWME change their value with the rising edge of CLK.

1.6.5.1 Transparent Mode

While XLT is passive or both D_RX and D_TX are passive, the PWME interface behaves transparent

between CAN_TX input and TXD output.

This Mode is independent of Reset.

1.6.5.2 PWM encoded Mode

While XLT is active, the TXD output is PWM encoded for a transmitting node while D_TX is active and

for the receiving node while D_RX active.

The PWM encoded TXD output has one CLK cycle delay (internal processing delay) relative to the bit

boundaries on CAN_TX input.

1.6.5.2.1 Transmitting Node

When the PWME detects an edge from passive to active on D_TX and if XLT is active, then the PWME

drives a LOW level on TXD for one PWM Offset time.

With expiration of the PWM Offset time the TXD output drives 2 consecutive PWM_0 symbols. From

there onwards all following PWM symbols follow the CAN_TX input.

PWME_23

PWME_92

PWME_24

PWME_74

PWME_25

PWME_26

PWME_27

PWME_75

PWME_28

PWME_29

PWME_76

PWME_30

PWME_31

PWME_32

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

283 | 306

When D_TX is passive or XLT is passive the PWME switches back to transparent behavior regardless of

the actual PWM phase.

1.6.5.2.2 Receiving Node

When the PWME detects an edge from passive to active on D_RX and if XLT is active, then the PWME

drives consecutive PWM_1 symbols without a leading Offset time.

When D_RX is passive or XLT is passive the PWME switches back to transparent behavior regardless of

the actual PWM phase.

1.7 IRC - Interrupt Controller

1.7.1 Overview

The X_CAN IP is equipped with a central interrupt controller (IRC). It captures all events of the MH

and PRT and can be configured for each event individually to interrupt the HOST CPU.

The events are organized in two categories, i.e., Functional Events and Error Events. Functional Events

can trigger the IRC output FUNC_INT. Error Events can trigger the IRC outputs ERR_INT and

SAFETY_INT.

1.7.2 Software Interface

1.7.2.1 Register Map

Address
offset

Register name Description Access Initial value

MH and PRT capture event registers

0x00 FUNC_RAW Functional raw event status register read-only 0x0

0x04 ERR_RAW Error raw event status register read-only 0x0

0x08 SAFETY_RAW Safety raw event status register read-only 0x0

IRC control register

0x10 FUNC_CLR Functional raw event clear register write-only 0x0

0x14 ERR_CLR Error raw event clear register write-only 0x0

0x18 SAFETY_CLR Safety raw event clear register write-only 0x0

0x20 FUNC_ENA Functional raw event enable register read-write 0x0

0x24 ERR_ENA Error raw event enable register read-write 0x0

0x28 SAFETY_ENA Safety raw event enable register read-write 0x0

Hardware configuration of the IRC.

0x30 CAPTURING_MODE IRC configuration register read-only 0x7

PWME_33

PWME_34

PWME_35

PWME_36

TOP_54

TOP_910

TOP_55

TOP_902

TOP_905

TOP_906

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

284 | 306

Auxiliary

0x40 HDP Hardware Debug Port control register read-only 0x7

1.7.2.2 Register Description

1.7.2.2.1 Event

REGISTER DESCRIPTION: This address block provides registers to capture events of the MH and the

PRT. The events are organized in three categories (one register for each category): Functional relevant,

functional error relevant and safety relevant.

SIZE:

Register Base Address: 0x00

Register Address Range: 0x10

1.7.2.2.1.1 FUNC_RAW

Functional raw event status register. This register provides information about the occurrence of

functional relevant events inside the MH and the PRT. A flag is set when the related event is detected,

independent of FUNC_ENA. The flags remain set until the Host CPU clears them by writing a 1 to the

corresponding bit position at register FUNC_CLR.

Address
Offset:

0x00000000 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit

P
R

T
_R

X
_E

V
T

P
R

T
_T

X
_E

V
T

P
R

T
_B

U
S

_O
N

P
R

T
_E

_A
C

T
IV

E

M
H

_S
T
A
T
S

_I
R

Q

M
H

_R
X
_A

B
O

R
T
_I

R
Q

M
H

_T
X
_A

B
O

R
T
_I

R
Q

M
H

_T
X
_F

IL
T
E
R

_I
R

Q

M
H

_R
X
_F

IL
T
E
R

_I
R

Q

M
H

_S
T
O

P
_I

R
Q

M
H

_T
X
_P

Q
_I

R
Q

M
H

_R
X
_F

Q
7
_I

R
Q

M
H

_R
X
_F

Q
6
_I

R
Q

M
H

_R
X
_F

Q
5
_I

R
Q

M
H

_R
X
_F

Q
4
_I

R
Q

M
H

_R
X
_F

Q
3
_I

R
Q

M
H

_R
X
_F

Q
2
_I

R
Q

M
H

_R
X
_F

Q
1
_I

R
Q

M
H

_R
X
_F

Q
0
_I

R
Q

M
H

_T
X
_F

Q
7
_I

R
Q

M
H

_T
X
_F

Q
6
_I

R
Q

M
H

_T
X
_F

Q
5
_I

R
Q

M
H

_T
X
_F

Q
4
_I

R
Q

M
H

_T
X
_F

Q
3
_I

R
Q

M
H

_T
X
_F

Q
2
_I

R
Q

M
H

_T
X
_F

Q
1
_I

R
Q

M
H

_T
X
_F

Q
0
_I

R
Q

Mode R

R

R

R
 R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

Initial
Value

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

Bit 0 MH interrupt of the TX FIFO Queue 0. This interrupt is triggered when an
invalid TX descriptor is fetched from this TX FIFO Queue, a TX message
from that FIFO Queue is sent (if set in TX descriptor), or a TX message of
that TX FIFO Queue is skipped, see description of TX_FQ_IRQ[7:0] in MH
section.

Bit 1 MH interrupt of the TX FIFO Queue 1. Refer to the description of the
MH_TX_FQ0_IRQ

Bit 2 MH interrupt of the TX FIFO Queue 2. Refer to the description of the
MH_TX_FQ0_IRQ

TOP_193

TOP_422

TOP_423

TOP_450

TOP_449

TOP_448

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

285 | 306

Bit 3 MH interrupt of the TX FIFO Queue 3. Refer to the description of the
MH_TX_FQ0_IRQ

Bit 4 MH interrupt of the TX FIFO Queue 4. Refer to the description of the
MH_TX_FQ0_IRQ

Bit 5 MH interrupt of the TX FIFO Queue 5. Refer to the description of the
MH_TX_FQ0_IRQ

Bit 6 MH interrupt of the TX FIFO Queue 6. Refer to the description of the
MH_TX_FQ0_IRQ

Bit 7 MH interrupt of the TX FIFO Queue 7. Refer to the description of the
MH_TX_FQ0_IRQ

Bit 8 MH interrupt of the RX FIFO Queue 0. This interrupt is triggered when an
invalid RX descriptor is fetched from this RX FIFO Queue, or an RX
message is received (if set in RX descriptor) in this RX FIFO Queue, see
description of RX_FQ_IRQ[7:0] in MH section.

Bit 9 MH interrupt of the RX FIFO Queue 1. Refer to the description of the
MH_RX_FQ0_IRQ

Bit 10 MH interrupt of the RX FIFO Queue 2. Refer to the description of the
MH_RX_FQ0_IRQ

Bit 11 MH interrupt of the RX FIFO Queue 3. Refer to the description of the
MH_RX_FQ0_IRQ

Bit 12 MH interrupt of the RX FIFO Queue 4. Refer to the description of the
MH_RX_FQ0_IRQ

Bit 13 MH interrupt of the RX FIFO Queue 5. Refer to the description of the
MH_RX_FQ0_IRQ

Bit 14 MH interrupt of the RX FIFO Queue 6. Refer to the description of the
MH_RX_FQ0_IRQ

Bit 15 MH interrupt of the RX FIFO Queue 7. Refer to the description of the
MH_RX_FQ0_IRQ

Bit 16 Interrupt of TX Priority Queue. Any TX message sent from the TX Priority
Queue can be configured to trigger this interrupt. The SW would then
need to look at the MH register TX_PQ_INT_STS to identify which slot has
generated the interrupt and for which reason.

Bit 17 The interrupt is triggered when the PRT is stopped. The MH finishes its
task and switches to idle mode.

Bit 18 In order to track RX filtering results, an interrupt can be triggered when
the comparison between a RX message header and a defined filter is
successful.

Bit 19 The interrupt is triggered when the TX filter is enabled, and a TX message
is rejected.

Bit 20 This interrupt line is triggered when the MH needs to abort a TX message
being sent to the PRT.

TOP_447

TOP_446

TOP_445

TOP_444

TOP_443

TOP_442

TOP_441

TOP_440

TOP_439

TOP_438

TOP_437

TOP_436

TOP_435

TOP_434

TOP_433

TOP_432

TOP_431

TOP_430

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

286 | 306

Bit 21 This interrupt line is triggered when the MH needs to abort a RX message
being received from PRT.

Bit 22 One of the RX/TX counters have reached the threshold.

Bit 24 PRT switched from Error-Passive to Error-Active state.

Bit 25 PRT started CAN communication, after start or end of BusOff

Bit 26 PRT transmitted a valid CAN message

Bit 27 PRT received a valid CAN message

1.7.2.2.1.2 ERR_RAW

Error raw event status register. This register provides information about the occurrence of functional

error relevant events inside the MH and the PRT. A flag is set when the related event is detected,

independent of ERR_ENA. The flags remain set until the Host CPU clears them by writing a 1 to the

corresponding bit position at register ERR_CLR.

Address
Offset:

0x00000004 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit

T
O

P
_M

U
X
_T

O
_E

R
R

P
R

T
_B

U
S

_O
F
F

P
R

T
_E

_P
A
S

S
IV

E

P
R

T
_B

U
S

_E
R

R

P
R

T
_I

F
F
_R

Q

P
R

T
_R

X
_D

O

P
R

T
_T

X
_D

U

P
R

T
_U

S
O

S

P
R

T
_A

B
O

R
T
E
D

M
H

_M
E
M

_T
O

_E
R

R

M
H

_W
R

_R
E
S

P
_E

R
R

M
H

_R
D

_R
E
S

P
_E

R
R

M
H

_D
M

A
_C

H
_E

R
R

M
H

_D
M

A
_T

O
_E

R
R

M
H

_D
P

_T
O

_E
R

R

M
H

_D
P

_D
O

_E
R

R

M
H

_D
P

_S
E
Q

_E
R

R

M
H

_D
P

_P
A
R

IT
Y
_E

R
R

M
H

_A
P

_P
A
R

IT
Y
_E

R
R

M
H

_D
E
S

C
_E

R
R

M
H

_R
E
G

_C
R

C
_E

R
R

M
H

_M
E
M

_S
F
T
Y
_E

R
R

M
H

_R
X
_F

IL
T
E
R

_E
R

R

Mode R
 R

R

R

R

R

R

R

R
 R

R

R

R

R

R

R

R

R

R

R

R

R

R

Initial
Value

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

Bit 0 MH RX filtering has not finished in time, i.e. current RX filtering has not
been completed before next incoming RX message requires RX filtering.

Bit 1 MH detected error in L_MEM. This interrupt is triggered when either the
MEM_SFTY_CE or MEM_SFTY_UE input signal is active. The Message
Handler provides the information, which signal was active, see flags
MH:SFTY_INT_STS.MEM_SFTY_CE and MH:SFTY_INT_STS.MEM_SFTY_UE.

Bit 2 MH detected CRC error at the register bank. See also description of
REG_CRC_ERR in MH section.

Bit 3 CRC error detected on RX/TX descriptor or RX/TX descriptor not
expected detected. A status flag can define if it is on TX or RX path, see
SFTY_INT_STS register.

Bit 4 MH detected parity error at address pointers, used to manage the MH
Queues (RX/TX FIFO Queues and TX Priority Queues). See also
description of AP_PARITY_ERR in MH section.

TOP_429

TOP_428

TOP_427

TOP_426

TOP_425

TOP_424

TOP_451

TOP_473

TOP_472

TOP_471

TOP_470

TOP_469

TOP_468

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

287 | 306

Bit 5 MH detected parity error at RX message data (received from PRT and
written to AXI system bus) respective parity error detected at TX message
data (read from AXI system bus and transferred to PRT).

Associated information provided by MH register ERR_INT_STS, e.g. if RX message or
TX message was affected.

Bit 6 MH detected an incorrect sequence at RX_MSG respective TX_MSG
interfaces located between MH and PRT. Associated information
provided by MH register ERR_INT_STS, e.g. if RX or TX interface was
affected.

Bit 7 MH detected a data overflow at RX buffer, see description of DP_DO_ERR
in MH section.

Bit 8 MH detected timeout at TX_MSG interface located between MH and PRT,
see description of DP_TO_ERR in MH section.

Bit 9 MH detected timeout at DMA_AXI interface, see description of
DMA_TO_ERR in MH section.

Bit 10 MH detected routing error, i.e. data received or sent are not properly
routed to or from DMA channel interfaces, see description of
DMA_CH_ERR in MH section.

Bit 11 MH detected a bus error caused by a read access to S_MEM respective
L_MEM, see description of RESP_ERR in MH section.

Bit 12 MH detected a bus error caused by a write access to S_MEM respective
L_MEM, see description of RESP_ERR in MH section.

Bit 13 MH detected timeout at local memory interface MEM_AXI, see description
of MEM_TO_ERR in MH section.

Bit 16 PRT detected stop of TX_MSG sequence by TX_MSG_WUSER code
ABORT.

Bit 17 PRT detected unexpected Start of Sequence during TX_MSG sequence.

Bit 18 PRT detected underrun condition at TX_MSG sequence.

Bit 19 PRT detected overflow condition at RX_MSG sequence.

Bit 20 PRT detected invalid Frame Format at TX_MSG.

Bit 21 PRT detected error on the CAN Bus.

Bit 22 PRT switched from Error-Active to Error-Passive state.

Bit 23 PRT entered Bus_Off state.

Bit 28 Timeout at top-level multiplexer for HOST_AXI detected.

1.7.2.2.1.3 SAFETY_RAW

Safety raw event status register. This register provides information about the occurrence of safety

relevant events inside the MH and the PRT. A flag is set when the related event is detected,

independent of SAFETY_ENA. The flags remain set until the Host CPU clears them by writing a 1 to the

corresponding bit position at register SAFETY_CLR.

TOP_467

TOP_466

TOP_465

TOP_464

TOP_463

TOP_462

TOP_461

TOP_460

TOP_459

TOP_458

TOP_457

TOP_456

TOP_455

TOP_454

TOP_453

TOP_452

TOP_828

TOP_474

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

288 | 306

Address
Offset:

0x00000008 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit

T
O

P
_M

U
X
_T

O
_E

R
R

P
R

T
_B

U
S

_O
F
F

P
R

T
_E

_P
A
S

S
IV

E

P
R

T
_B

U
S

_E
R

R

P
R

T
_I

F
F
_R

Q

P
R

T
_R

X
_D

O

P
R

T
_T

X
_D

U

P
R

T
_U

S
O

S

P
R

T
_A

B
O

R
T
E
D

M
H

_M
E
M

_T
O

_E
R

R

M
H

_W
R

_R
E
S

P
_E

R
R

M
H

_R
D

_R
E
S

P
_E

R
R

M
H

_D
M

A
_C

H
_E

R
R

M
H

_D
M

A
_T

O
_E

R
R

M
H

_D
P

_T
O

_E
R

R

M
H

_D
P

_D
O

_E
R

R

M
H

_D
P

_S
E
Q

_E
R

R

M
H

_D
P

_P
A
R

IT
Y
_E

R
R

M
H

_A
P

_P
A
R

IT
Y
_E

R
R

M
H

_D
E
S

C
_E

R
R

M
H

_R
E
G

_C
R

C
_E

R
R

M
H

_M
E
M

_S
F
T
Y
_E

R
R

M
H

_R
X
_F

IL
T
E
R

_E
R

R

Mode R
 R

R

R

R

R

R

R

R
 R

R

R

R

R

R

R

R

R

R

R

R

R

R

Initial
Value

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

Bit 0 MH RX filtering has not finished in time, i.e. current RX filtering has not
been completed before next incoming RX message requires RX filtering.

Bit 1 MH detected error in L_MEM. This interrupt is triggered when either the
MEM_SFTY_CE or MEM_SFTY_UE input signal is active. The Message
Handler provides the information, which signal was active, see flags
MH:SFTY_INT_STS.MEM_SFTY_CE and MH:SFTY_INT_STS.MEM_SFTY_UE.

Bit 2 MH detected CRC error at the register bank. See also description of
REG_CRC_ERR in MH section.

Bit 3 CRC error detected on RX/TX descriptor or RX/TX descriptor not
expected detected. A status flag can define if it is on TX or RX path, see
SFTY_INT_STS register.

Bit 4 MH detected parity error at address pointers, used to manage the MH
Queues (RX/TX FIFO Queues and TX Priority Queues). See also
description of AP_PARITY_ERR in MH section.

Bit 5 MH detected parity error at RX message data (received from PRT and
written to AXI system bus) respective parity error detected at TX message
data (read from AXI system bus and transferred to PRT).

Associated information provided by MH register ERR_INT_STS, e.g. if RX message or
TX message was affected.

Bit 6 MH detected an incorrect sequence at RX_MSG respective TX_MSG
interfaces located between MH and PRT. Associated information
provided by MH register ERR_INT_STS, e.g. if RX or TX interface was
affected.

Bit 7 MH detected a data overflow at RX buffer, see description of DP_DO_ERR
in MH section.

Bit 8 MH detected timeout at TX_MSG interface located between MH and PRT,
see description of DP_TO_ERR in MH section.

Bit 9 MH detected timeout at DMA_AXI interface, see description of
DMA_TO_ERR in MH section.

TOP_496

TOP_495

TOP_494

TOP_493

TOP_492

TOP_491

TOP_490

TOP_489

TOP_488

TOP_487

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

289 | 306

Bit 10 MH detected routing error, i.e. data received or sent are not properly
routed to or from DMA channel interfaces, see description of
DMA_CH_ERR in MH section.

Bit 11 MH detected a bus error caused by a read access to S_MEM respective
L_MEM, see description of RESP_ERR in MH section.

Bit 12 MH detected a bus error caused by a write access to S_MEM respective
L_MEM, see description of RESP_ERR in MH section.

Bit 13 MH detected timeout at local memory interface MEM_AXI, see description
of MEM_TO_ERR in MH section.

Bit 16 PRT detected stop of TX_MSG sequence by TX_MSG_WUSER code
ABORT.

Bit 17 PRT detected unexpected Start of Sequence during TX_MSG sequence.

Bit 18 PRT detected underrun condition at TX_MSG sequence.

Bit 19 PRT detected overflow condition at RX_MSG sequence.

Bit 20 PRT detected invalid Frame Format at TX_MSG.

Bit 21 PRT detected error on the CAN Bus.

Bit 22 PRT switched from Error-Active to Error-Passive state.

Bit 23 PRT entered Bus_Off state.

Bit 28 Timeout at top-level multiplexer for HOST_AXI detected.

1.7.2.2.2 Control

REGISTER DESCRIPTION: This address block provides the registers for controlling the IRC.

SIZE:

Register Base Address: 0x10

Register Address Range: 0x20

1.7.2.2.2.1 FUNC_CLR

Functional raw event clear register. Writing a 1 to a certain bit position clears the corresponding bit of

register FUNC_RAW. Writing a ’0’ has no effect.

TOP_486

TOP_485

TOP_484

TOP_483

TOP_482

TOP_481

TOP_480

TOP_479

TOP_478

TOP_477

TOP_476

TOP_475

TOP_826

TOP_667

TOP_668

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

290 | 306

Address
Offset:

0x00000000 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit

P
R

T
_R

X
_E

V
T

P
R

T
_T

X
_E

V
T

P
R

T
_B

U
S

_O
N

P
R

T
_E

_A
C

T
IV

E

M
H

_S
T
A
T
S

_I
R

Q

M
H

_R
X
_A

B
O

R
T
_I

R
Q

M
H

_T
X
_A

B
O

R
T
_I

R
Q

M
H

_T
X
_F

IL
T
E
R

_I
R

Q

M
H

_R
X
_F

IL
T
E
R

_I
R

Q

M
H

_S
T
O

P
_I

R
Q

M
H

_T
X
_P

Q
_I

R
Q

M
H

_R
X
_F

Q
7
_I

R
Q

M
H

_R
X
_F

Q
6
_I

R
Q

M
H

_R
X
_F

Q
5
_I

R
Q

M
H

_R
X
_F

Q
4
_I

R
Q

M
H

_R
X
_F

Q
3
_I

R
Q

M
H

_R
X
_F

Q
2
_I

R
Q

M
H

_R
X
_F

Q
1
_I

R
Q

M
H

_R
X
_F

Q
0
_I

R
Q

M
H

_T
X
_F

Q
7
_I

R
Q

M
H

_T
X
_F

Q
6
_I

R
Q

M
H

_T
X
_F

Q
5
_I

R
Q

M
H

_T
X
_F

Q
4
_I

R
Q

M
H

_T
X
_F

Q
3
_I

R
Q

M
H

_T
X
_F

Q
2
_I

R
Q

M
H

_T
X
_F

Q
1
_I

R
Q

M
H

_T
X
_F

Q
0
_I

R
Q

Mode W

W

W

W
 W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

Initial
Value

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

Bit 0 Clear bit of FUNC_RAW.MH_TX_FQ0_IRQ by writing 1

Bit 1 Clear bit of FUNC_RAW.MH_TX_FQ1_IRQ by writing 1

Bit 2 Clear bit of FUNC_RAW.MH_TX_FQ2_IRQ by writing 1

Bit 3 Clear bit of FUNC_RAW.MH_TX_FQ3_IRQ by writing 1

Bit 4 Clear bit of FUNC_RAW.MH_TX_FQ4_IRQ by writing 1

Bit 5 Clear bit of FUNC_RAW.MH_TX_FQ5_IRQ by writing 1

Bit 6 Clear bit of FUNC_RAW.MH_TX_FQ6_IRQ by writing 1

Bit 7 Clear bit of FUNC_RAW.MH_TX_FQ7_IRQ by writing 1

Bit 8 Clear bit of FUNC_RAW.MH_RX_FQ0_IRQ by writing 1

Bit 9 Clear bit of FUNC_RAW.MH_RX_FQ1_IRQ by writing 1

Bit 10 Clear bit of FUNC_RAW.MH_RX_FQ2_IRQ by writing 1

Bit 11 Clear bit of FUNC_RAW.MH_RX_FQ3_IRQ by writing 1

Bit 12 Clear bit of FUNC_RAW.MH_RX_FQ4_IRQ by writing 1

Bit 13 Clear bit of FUNC_RAW.MH_RX_FQ5_IRQ by writing 1

Bit 14 Clear bit of FUNC_RAW.MH_RX_FQ6_IRQ by writing 1

Bit 15 Clear bit of FUNC_RAW.MH_RX_FQ7_IRQ by writing 1

Bit 16 Clear bit FUNC_RAW.MH_TX_PQ_IRQ by writing 1

Bit 17 Clear bit FUNC_RAW.MH_STOP_IRQ by writing 1

Bit 18 Clear bit FUNC_RAW.MH_RX_FILTER_IRQ by writing 1

Bit 19 Clear bit FUNC_RAW.MH_TX_FILTER_IRQ by writing 1

Bit 20 Clear bit FUNC_RAW.MH_TX_ABORT_IRQ by writing 1

Bit 21 Clear bit FUNC_RAW.MH_RX_ABORT_IRQ by writing 1

Bit 22 Clear bit FUNC_RAW.MH_STATS_IRQ by writing 1

Bit 24 Clear bit FUNC_RAW.PRT_E_ACTIVE by writing 1

Bit 25 Clear bit FUNC_RAW.PRT_BUS_ON by writing 1

Bit 26 Clear bit FUNC_RAW.PRT_TX_EVT by writing 1

Bit 27 Clear bit FUNC_RAW.PRT_RX_EVT by writing 1

TOP_695

TOP_694

TOP_693

TOP_692

TOP_691

TOP_690

TOP_689

TOP_688

TOP_687

TOP_686

TOP_685

TOP_684

TOP_683

TOP_682

TOP_681

TOP_680

TOP_679

TOP_678

TOP_677

TOP_676

TOP_675

TOP_674

TOP_673

TOP_672

TOP_671

TOP_670

TOP_669

TOP_696

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

291 | 306

1.7.2.2.2.2 ERR_CLR

Error raw event clear register. Writing a 1 to a certain bit position clears the corresponding bit of

register ERR_RAW. Writing a ’0’ has no effect.

Address
Offset:

0x00000004 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit

T
O

P
_M

U
X
_T

O
_E

R
R

P
R

T
_B

U
S

_O
F
F

P
R

T
_E

_P
A
S

S
IV

E

P
R

T
_B

U
S

_E
R

R

P
R

T
_I

F
F
_R

Q

P
R

T
_R

X
_D

O

P
R

T
_T

X
_D

U

P
R

T
_U

S
O

S

P
R

T
_A

B
O

R
T
E
D

M
H

_M
E
M

_T
O

_E
R

R

M
H

_W
R

_R
E
S

P
_E

R
R

M
H

_R
D

_R
E
S

P
_E

R
R

M
H

_D
M

A
_C

H
_E

R
R

M
H

_D
M

A
_T

O
_E

R
R

M
H

_D
P

_T
O

_E
R

R

M
H

_D
P

_D
O

_E
R

R

M
H

_D
P

_S
E
Q

_E
R

R

M
H

_D
P

_P
A
R

IT
Y
_E

R
R

M
H

_A
P

_P
A
R

IT
Y
_E

R
R

M
H

_D
E
S

C
_E

R
R

M
H

_R
E
G

_C
R

C
_E

R
R

M
H

_M
E
M

_S
F
T
Y
_E

R
R

M
H

_R
X
_F

IL
T
E
R

_E
R

R

Mode W
 W

W

W

W

W

W

W

W
 W

W

W

W

W

W

W

W

W

W

W

W

W

W

Initial
Value

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

Bit 0 Clear bit ERR_RAW.MH_RX_FILTER_ERR by writing 1

Bit 1 Clear bit ERR_RAW.MH_MEM_SFTY_ERR by writing 1

Bit 2 Clear bit ERR_RAW.MH_REG_CRC_ERR by writing 1

Bit 3 Clear bit ERR_RAW.MH_DESC_ERR by writing 1

Bit 4 Clear bit ERR_RAW.MH_AP_PARITY_ERR by writing 1

Bit 5 Clear bit ERR_RAW.MH_DP_PARITY_ERR by writing 1

Bit 6 Clear bit ERR_RAW.MH_DP_SEQ_ERR by writing 1

Bit 7 Clear bit ERR_RAW.MH_DP_DO_ERR by writing 1

Bit 8 Clear bit ERR_RAW.MH_DP_TO_ERR by writing 1

Bit 9 Clear bit ERR_RAW.MH_DMA_TO_ERR by writing 1

Bit 10 Clear bit ERR_RAW.MH_DMA_CH_ERR by writing 1

Bit 11 Clear bit ERR_RAW.MH_RD_RESP_ERR by writing 1

Bit 12 Clear bit ERR_RAW.MH_WR_RESP_ERR by writing 1

Bit 13 Clear bit ERR_RAW.MH_MEM_TO_ERR by writing 1

Bit 16 Clear bit ERR_RAW.PRT_ABORTED by writing 1

Bit 17 Clear bit ERR_RAW.PRT_USOS by writing 1

Bit 18 Clear bit ERR_RAW.PRT_TX_DU by writing 1

Bit 19 Clear bit ERR_RAW.PRT_RX_DO by writing 1

Bit 20 Clear bit ERR_RAW.PRT_IFF_RQ by writing 1

Bit 21 Clear bit ERR_RAW.PRT_BUS_ERR by writing 1

Bit 22 Clear bit ERR_RAW.PRT_E_PASSIVE by writing 1

Bit 23 Clear bit ERR_RAW.PRT_BUS_OFF by writing 1

Bit 28 Clear bit ERR_RAW.TOP_MUX_TO_ERR by writing 1

TOP_719

TOP_718

TOP_717

TOP_716

TOP_715

TOP_714

TOP_713

TOP_712

TOP_711

TOP_710

TOP_709

TOP_708

TOP_707

TOP_706

TOP_705

TOP_704

TOP_703

TOP_702

TOP_701

TOP_700

TOP_699

TOP_698

TOP_697

TOP_720

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

292 | 306

1.7.2.2.2.3 SAFETY_CLR

Safety raw event clear register. Writing a 1 to a certain bit position clears the corresponding bit of

register SAFETY_RAW. Writing a ’0’ has no effect.

Address
Offset:

0x00000008 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit

T
O

P
_M

U
X
_T

O
_E

R
R

P
R

T
_B

U
S

_O
F
F

P
R

T
_E

_P
A
S

S
IV

E

P
R

T
_B

U
S

_E
R

R

P
R

T
_I

F
F
_R

Q

P
R

T
_R

X
_D

O

P
R

T
_T

X
_D

U

P
R

T
_U

S
O

S

P
R

T
_A

B
O

R
T
E
D

M
H

_M
E
M

_T
O

_E
R

R

M
H

_W
R

_R
E
S

P
_E

R
R

M
H

_R
D

_R
E
S

P
_E

R
R

M
H

_D
M

A
_C

H
_E

R
R

M
H

_D
M

A
_T

O
_E

R
R

M
H

_D
P

_T
O

_E
R

R

M
H

_D
P

_D
O

_E
R

R

M
H

_D
P

_S
E
Q

_E
R

R

M
H

_D
P

_P
A
R

IT
Y
_E

R
R

M
H

_A
P

_P
A
R

IT
Y
_E

R
R

M
H

_D
E
S

C
_E

R
R

M
H

_R
E
G

_C
R

C
_E

R
R

M
H

_M
E
M

_S
F
T
Y
_E

R
R

M
H

_R
X
_F

IL
T
E
R

_E
R

R

Mode W
 W

W

W

W

W

W

W

W
 W

W

W

W

W

W

W

W

W

W

W

W

W

W

Initial
Value

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

Bit 0 Clear bit SAFETY_RAW.MH_RX_FILTER_ERR by writing 1

Bit 1 Clear bit SAFETY_RAW.MH_MEM_SFTY_ERR by writing 1

Bit 2 Clear bit SAFETY_RAW.MH_REG_CRC_ERR by writing 1

Bit 3 Clear bit SAFETY_RAW.MH_DESC_ERR by writing 1

Bit 4 Clear bit SAFETY_RAW.MH_AP_PARITY_ERR by writing 1

Bit 5 Clear bit SAFETY_RAW.MH_DP_PARITY_ERR by writing 1

Bit 6 Clear bit SAFETY_RAW.MH_DP_SEQ_ERR by writing 1

Bit 7 Clear bit SAFETY_RAW.MH_DP_DO_ERR by writing 1

Bit 8 Clear bit SAFETY_RAW.MH_DP_TO_ERR by writing 1

Bit 9 Clear bit SAFETY_RAW.MH_DMA_TO_ERR by writing 1

Bit 10 Clear bit SAFETY_RAW.MH_DMA_CH_ERR by writing 1

Bit 11 Clear bit SAFETY_RAW.MH_RD_RESP_ERR by writing 1

Bit 12 Clear bit SAFETY_RAW.MH_WR_RESP_ERR by writing 1

Bit 13 Clear bit SAFETY_RAW.MH_MEM_TO_ERR by writing 1

Bit 16 Clear bit SAFETY_RAW.PRT_ABORTED by writing 1

Bit 17 Clear bit SAFETY_RAW.PRT_USOS by writing 1

Bit 18 Clear bit SAFETY_RAW.PRT_TX_DU by writing 1

Bit 19 Clear bit SAFETY_RAW.PRT_RX_DO by writing 1

Bit 20 Clear bit SAFETY_RAW.PRT_IFF_RQ by writing 1

Bit 21 Clear bit SAFETY_RAW.PRT_BUS_ERR by writing 1

Bit 22 Clear bit SAFETY_RAW.PRT_E_PASSIVE by writing 1

Bit 23 Clear bit SAFETY_RAW.PRT_BUS_OFF by writing 1

Bit 28 Clear bit SAFETY_RAW.TOP_MUX_TO_ERR by writing 1

TOP_743

TOP_742

TOP_741

TOP_740

TOP_739

TOP_738

TOP_737

TOP_736

TOP_735

TOP_734

TOP_733

TOP_732

TOP_731

TOP_730

TOP_729

TOP_728

TOP_727

TOP_726

TOP_725

TOP_724

TOP_723

TOP_722

TOP_721

TOP_744

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

293 | 306

1.7.2.2.2.4 FUNC_ENA

Functional raw event enable register. Any bit in the FUNC_ENA register enables the corresponding bit

in the FUNC_RAW to trigger the interrupt line FUNC_INT. The interrupt line gets active high, when at

least one RAW/ENA pair is 1, e.g. FUNC_RAW.MH_TX_FQ_IRQ = FUNC_ENA.MH_TX_FQ_IRQ = 1

Address
Offset:

0x00000010 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit

P
R

T
_R

X
_E

V
T

P
R

T
_T

X
_E

V
T

P
R

T
_B

U
S

_O
N

P
R

T
_E

_A
C

T
IV

E

M
H

_S
T
A
T
S

_I
R

Q

M
H

_R
X
_A

B
O

R
T
_I

R
Q

M
H

_T
X
_A

B
O

R
T
_I

R
Q

M
H

_T
X
_F

IL
T
E
R

_I
R

Q

M
H

_R
X
_F

IL
T
E
R

_I
R

Q

M
H

_S
T
O

P
_I

R
Q

M
H

_T
X
_P

Q
_I

R
Q

M
H

_R
X
_F

Q
7
_I

R
Q

M
H

_R
X
_F

Q
6
_I

R
Q

M
H

_R
X
_F

Q
5
_I

R
Q

M
H

_R
X
_F

Q
4
_I

R
Q

M
H

_R
X
_F

Q
3
_I

R
Q

M
H

_R
X
_F

Q
2
_I

R
Q

M
H

_R
X
_F

Q
1
_I

R
Q

M
H

_R
X
_F

Q
0
_I

R
Q

M
H

_T
X
_F

Q
7
_I

R
Q

M
H

_T
X
_F

Q
6
_I

R
Q

M
H

_T
X
_F

Q
5
_I

R
Q

M
H

_T
X
_F

Q
4
_I

R
Q

M
H

_T
X
_F

Q
3
_I

R
Q

M
H

_T
X
_F

Q
2
_I

R
Q

M
H

_T
X
_F

Q
1
_I

R
Q

M
H

_T
X
_F

Q
0
_I

R
Q

Mode

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

Initial
Value

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

Bit 0 Enable FUNC_RAW.MH_TX_FQ0_IRQ to activate FUNC_INT

Bit 1 Enable FUNC_RAW.MH_TX_FQ1_IRQ to activate FUNC_INT

Bit 2 Enable FUNC_RAW.MH_TX_FQ2_IRQ to activate FUNC_INT

Bit 3 Enable FUNC_RAW.MH_TX_FQ3_IRQ to activate FUNC_INT

Bit 4 Enable FUNC_RAW.MH_TX_FQ4_IRQ to activate FUNC_INT

Bit 5 Enable FUNC_RAW.MH_TX_FQ5_IRQ to activate FUNC_INT

Bit 6 Enable FUNC_RAW.MH_TX_FQ6_IRQ to activate FUNC_INT

Bit 7 Enable FUNC_RAW.MH_TX_FQ7_IRQ to activate FUNC_INT

Bit 8 Enable FUNC_RAW.MH_RX_FQ0_IRQ to activate FUNC_INT

Bit 9 Enable FUNC_RAW.MH_RX_FQ1_IRQ to activate FUNC_INT

Bit 10 Enable FUNC_RAW.MH_RX_FQ2_IRQ to activate FUNC_INT

Bit 11 Enable FUNC_RAW.MH_RX_FQ3_IRQ to activate FUNC_INT

Bit 12 Enable FUNC_RAW.MH_RX_FQ4_IRQ to activate FUNC_INT

Bit 13 Enable FUNC_RAW.MH_RX_FQ5_IRQ to activate FUNC_INT

Bit 14 Enable FUNC_RAW.MH_RX_FQ6_IRQ to activate FUNC_INT

Bit 15 Enable FUNC_RAW.MH_RX_FQ7_IRQ to activate FUNC_INT

Bit 16 Enable FUNC_RAW.MH_TX_PQ_IRQ to activate FUNC_INT

Bit 17 Enable FUNC_RAW.MH_STOP_IRQ to activate FUNC_INT

Bit 18 Enable FUNC_RAW.MH_RX_FILTER_IRQ to activate FUNC_INT

Bit 19 Enable FUNC_RAW.MH_TX_FILTER_IRQ to activate FUNC_INT

Bit 20 Enable FUNC_RAW.MH_TX_ABORT_IRQ to activate FUNC_INT

Bit 21 Enable FUNC_RAW.MH_RX_ABORT_IRQ to activate FUNC_INT

Bit 22 Enable FUNC_RAW.MH_STATS_IRQ to activate FUNC_INT

Bit 24 Enable FUNC_RAW.PRT_E_ACTIVE to activate FUNC_INT

TOP_771

TOP_770

TOP_769

TOP_768

TOP_767

TOP_766

TOP_765

TOP_764

TOP_763

TOP_762

TOP_761

TOP_760

TOP_759

TOP_758

TOP_757

TOP_756

TOP_755

TOP_754

TOP_753

TOP_752

TOP_751

TOP_750

TOP_749

TOP_748

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

294 | 306

Bit 25 Enable FUNC_RAW.PRT_BUS_ON to activate FUNC_INT

Bit 26 Enable FUNC_RAW.PRT_TX_EVT to activate FUNC_INT

Bit 27 Enable FUNC_RAW.PRT_RX_EVT to activate FUNC_INT

1.7.2.2.2.5 ERR_ENA

Error raw event enable register. Any bit in the ERR_ENA register enables the corresponding bit in the

ERR_RAW to trigger the interrupt line ERR_INT. The interrupt line gets active high, when at least one

RAW/ENA pair is 1, e.g. ERR_RAW.MH_TX_FQ_IRQ = ERR_ENA.MH_TX_FQ_IRQ = 1

Address
Offset:

0x00000014 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit

T
O

P
_M

U
X
_T

O
_E

R
R

P
R

T
_B

U
S

_O
F
F

P
R

T
_E

_P
A
S

S
IV

E

P
R

T
_B

U
S

_E
R

R

P
R

T
_I

F
F
_R

Q

P
R

T
_R

X
_D

O

P
R

T
_T

X
_D

U

P
R

T
_U

S
O

S

P
R

T
_A

B
O

R
T
E
D

M
H

_M
E
M

_T
O

_E
R

R

M
H

_W
R

_R
E
S

P
_E

R
R

M
H

_R
D

_R
E
S

P
_E

R
R

M
H

_D
M

A
_C

H
_E

R
R

M
H

_D
M

A
_T

O
_E

R
R

M
H

_D
P

_T
O

_E
R

R

M
H

_D
P

_D
O

_E
R

R

M
H

_D
P

_S
E
Q

_E
R

R

M
H

_D
P

_P
A
R

IT
Y
_E

R
R

M
H

_A
P

_P
A
R

IT
Y
_E

R
R

M
H

_D
E
S

C
_E

R
R

M
H

_R
E
G

_C
R

C
_E

R
R

M
H

_M
E
M

_S
F
T
Y
_E

R
R

M
H

_R
X
_F

IL
T
E
R

_E
R

R

Mode

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

Initial
Value

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

Bit 0 Enable ERR_RAW.MH_RX_FILTER_ERR to activate ERR_INT

Bit 1 Enable ERR_RAW.MH_MEM_SFTY_ERR to activate ERR_INT

Bit 2 Enable ERR_RAW.MH_REG_CRC_ERR to activate ERR_INT

Bit 3 Enable ERR_RAW.MH_DESC_ERR to activate ERR_INT

Bit 4 Enable ERR_RAW.MH_AP_PARITY_ERR to activate ERR_INT

Bit 5 Enable ERR_RAW.MH_DP_PARITY_ERR to activate ERR_INT

Bit 6 Enable ERR_RAW.MH_DP_SEQ_ERR to activate ERR_INT

Bit 7 Enable ERR_RAW.MH_DP_DO_ERR to activate ERR_INT

Bit 8 Enable ERR_RAW.MH_DP_TO_ERR to activate ERR_INT

Bit 9 Enable ERR_RAW.MH_DMA_TO_ERR to activate ERR_INT

Bit 10 Enable ERR_RAW.MH_DMA_CH_ERR to activate ERR_INT

Bit 11 Enable ERR_RAW.MH_RD_RESP_ERR to activate ERR_INT

Bit 12 Enable ERR_RAW.MH_WR_RESP_ERR to activate ERR_INT

Bit 13 Enable ERR_RAW.MH_MEM_TO_ERR to activate ERR_INT

Bit 16 Enable ERR_RAW.PRT_ABORTED to activate ERR_INT

Bit 17 Enable ERR_RAW.PRT_USOS to activate ERR_INT

Bit 18 Enable ERR_RAW.PRT_TX_DU to activate ERR_INT

Bit 19 Enable ERR_RAW.PRT_RX_DO to activate ERR_INT

Bit 20 Enable ERR_RAW.PRT_IFF_RQ to activate ERR_INT

Bit 21 Enable ERR_RAW.PRT_BUS_ERR to activate ERR_INT

TOP_747

TOP_746

TOP_745

TOP_772

TOP_795

TOP_794

TOP_793

TOP_792

TOP_791

TOP_790

TOP_789

TOP_788

TOP_787

TOP_786

TOP_785

TOP_784

TOP_783

TOP_782

TOP_781

TOP_780

TOP_779

TOP_778

TOP_777

TOP_776

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

295 | 306

Bit 22 Enable ERR_RAW.PRT_E_PASSIVE to activate ERR_INT

Bit 23 Enable ERR_RAW.PRT_BUS_OFF to activate ERR_INT

Bit 28 Enable ERR_RAW.TOP_MUX_TO_ERR to activate ERR_INT

1.7.2.2.2.6 SAFETY_ENA

Safety raw event enable register. Any bit in the SAFETY_ENA register enables the corresponding bit in

the SAFETY_RAW to trigger the interrupt line SAFETY_INT. The interrupt line gets active high, when at

least one RAW/ENA pair is 1, e.g. SAFETY_RAW.MH_TX_FQ_IRQ = SAFETY_ENA.MH_TX_FQ_IRQ = 1

Address
Offset:

0x00000018 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit

T
O

P
_M

U
X
_T

O
_E

R
R

P
R

T
_B

U
S

_O
F
F

P
R

T
_E

_P
A
S

S
IV

E

P
R

T
_B

U
S

_E
R

R

P
R

T
_I

F
F
_R

Q

P
R

T
_R

X
_D

O

P
R

T
_T

X
_D

U

P
R

T
_U

S
O

S

P
R

T
_A

B
O

R
T
E
D

M
H

_M
E
M

_T
O

_E
R

R

M
H

_W
R

_R
E
S

P
_E

R
R

M
H

_R
D

_R
E
S

P
_E

R
R

M
H

_D
M

A
_C

H
_E

R
R

M
H

_D
M

A
_T

O
_E

R
R

M
H

_D
P

_T
O

_E
R

R

M
H

_D
P

_D
O

_E
R

R

M
H

_D
P

_S
E
Q

_E
R

R

M
H

_D
P

_P
A
R

IT
Y
_E

R
R

M
H

_A
P

_P
A
R

IT
Y
_E

R
R

M
H

_D
E
S

C
_E

R
R

M
H

_R
E
G

_C
R

C
_E

R
R

M
H

_M
E
M

_S
F
T
Y
_E

R
R

M
H

_R
X
_F

IL
T
E
R

_E
R

R

Mode

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

R
W

Initial
Value

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

0
x0

Bit 0 Enable SAFETY_RAW.MH_RX_FILTER_ERR to activate SAFETY_INT

Bit 1 Enable SAFETY_RAW.MH_MEM_SFTY_ERR to activate SAFETY_INT

Bit 2 Enable SAFETY_RAW.MH_REG_CRC_ERR to activate SAFETY_INT

Bit 3 Enable SAFETY_RAW.MH_DESC_ERR to activate SAFETY_INT

Bit 4 Enable SAFETY_RAW.MH_AP_PARITY_ERR to activate SAFETY_INT

Bit 5 Enable SAFETY_RAW.MH_DP_PARITY_ERR to activate SAFETY_INT

Bit 6 Enable SAFETY_RAW.MH_DP_SEQ_ERR to activate SAFETY_INT

Bit 7 Enable SAFETY_RAW.MH_DP_DO_ERR to activate SAFETY_INT

Bit 8 Enable SAFETY_RAW.MH_DP_TO_ERR to activate SAFETY_INT

Bit 9 Enable SAFETY_RAW.MH_DMA_TO_ERR to activate SAFETY_INT

Bit 10 Enable SAFETY_RAW.MH_DMA_CH_ERR to activate SAFETY_INT

Bit 11 Enable SAFETY_RAW.MH_RD_RESP_ERR to activate SAFETY_INT

Bit 12 Enable SAFETY_RAW.MH_WR_RESP_ERR to activate SAFETY_INT

Bit 13 Enable SAFETY_RAW.MH_MEM_TO_ERR to activate SAFETY_INT

Bit 16 Enable SAFETY_RAW.PRT_ABORTED to activate SAFETY_INT

Bit 17 Enable SAFETY_RAW.PRT_USOS to activate SAFETY_INT

Bit 18 Enable SAFETY_RAW.PRT_TX_DU to activate SAFETY_INT

Bit 19 Enable SAFETY_RAW.PRT_RX_DO to activate SAFETY_INT

Bit 20 Enable SAFETY_RAW.PRT_IFF_RQ to activate SAFETY_INT

Bit 21 Enable SAFETY_RAW.PRT_BUS_ERR to activate SAFETY_INT

TOP_775

TOP_774

TOP_773

TOP_796

TOP_819

TOP_818

TOP_817

TOP_816

TOP_815

TOP_814

TOP_813

TOP_812

TOP_811

TOP_810

TOP_809

TOP_808

TOP_807

TOP_806

TOP_805

TOP_804

TOP_803

TOP_802

TOP_801

TOP_800

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

296 | 306

Bit 22 Enable SAFETY_RAW.PRT_E_PASSIVE to activate SAFETY_INT

Bit 23 Enable SAFETY_RAW.PRT_BUS_OFF to activate SAFETY_INT

Bit 28 Enable SAFETY_RAW.TOP_MUX_TO_ERR to activate SAFETY_INT

1.7.2.2.3 Configuration

REGISTER DESCRIPTION: Hardware configuration of the IRC

SIZE:

Register Base Address: 0x30

Register Address Range: 0x10

1.7.2.2.3.1 CAPTURING_MODE

IRC configuration register. This register shows the hardware configuration of the IRC concerning the

capturing mode of the event inputs. The IP internal events signals coming from the MH and the PRT

require an 'edge sensitive' capturing. That is why the value of this register is 0x7 and cannot be

changed.

Address
Offset:

0x00000000 Initial Value: 0x00000007

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit

S
A
F
E
T
Y

E
R

R

F
U

N
C

Mode R

R

R

Initial
Value

0
x1

0
x1

0
x1

Bit 0 Capturing mode of FUNC_RAW register.

0 = Level sensitive

1 = Edge sensitive

Bit 1 Capturing mode of ERR RAW register.

0 = Level sensitive

1 = Edge sensitive

Bit 2 Capturing mode of SAFETY RAW register.

0 = Level sensitive

1 = Edge sensitive

1.7.2.2.4 Auxiliary

REGISTER DESCRIPTION: Auxiliary registers

SIZE:

TOP_799

TOP_798

TOP_797

TOP_820

TOP_821

TOP_824

TOP_823

TOP_822

TOP_899

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

297 | 306

Register Base Address: 0x40

Register Address Range: 0xB0

1.7.2.2.4.1 HDP

Hardware Debug Port control register

Address
Offset:

0x00000000 Initial Value: 0x00000000

 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

Bit

H
D

P
_S

E
L

Mode

R
W

Initial
Value

0
x0

Bit 0 Select the driver of the Hardware Debug Port. See also chapter HDP.

0 = Message Handler

1 = Protocol Controller

1.7.3 Functional Description

The following table lists the categories and shows the related IRC registers together with the

dedicated IRC outputs:

Category IRC Registers IRC Output

Functional Event FUNC_RAW, FUNC_CLR, FUNC_ENA FUNC_INT

Error Event
ERR_RAW, ERR_CLR, ERR_ENA ERR_INT

SAFETY_RAW, SAFETY_CLR, SAFETY_ENA SAFETY_INT

For each category, three registers are implemented: xxx_RAW, xxx_CLR, and xxx_ENA. To capture the

events, the xxx_RAW registers are used. These registers provide information about the occurrence of

events inside the MH and the PRT. A flag is set when the related event occurred, independent of

xxx_ENA. The flags remain set until the HOST CPU clears them by writing a 1 to the corresponding bit

position at register xxx_CLR.

The xxx_ENA registers control on bit level, whether a certain bit in the xxx_RAW register can activate

the interrupt line xxx_INT. The interrupt line xxx_INT gets active high, when at least one RAW/ENA pair

is 1, e.g., ERR_INT gets active high, when ERR_RAW.MH_RX_FILTER_ERR =

ERR_ENA.MH_RX_FILTER_ERR = 1.

TOP_900

TOP_901

TOP_904

TOP_931

TOP_56

TOP_58

TOP_59

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

298 | 306

Details provided by register definitions.

1.8 Clock Domains and Resets

1.8.1 Clock Domains

The X_CAN IP is split into three clock domains.

• HOST Clock Domain

• CAN Clock Domain

• TIMEBASE Clock Domain

Clock

Check

Clock

Check

XCAND_TOP (clock & reset view)
Protocol Controller

Message Handler

Interrupt Controller

AXI Multiplexer

RESET_N

CAN_CLK_AXI

CAN_CLK

CLK_AXI

CLK

CAN_RESET_NRESET_N

CLK_AXI

CLK

RESET_N

CLK

CDC_EVENTS
SRC_CLK

SRC_RESET_N

CDC_AXI32
MST_CLK

MST_RESET_N

CDC_TIMEBASE

TIMEBASE_RESET_N

TIMEBASE_CLK

CDC_SIGNAL
SRC_CLK

SRC_RESET_N

CDC_TX_MSG
MST_CLK

MST_RESET_N

CDC_RX_MSG
SLV_CLK

SLV_RESET_N

PWME
CLK

RESET_N

RESET_N

CLK

SLV_RESET_N

SLV_CLK

DST_CLK

DST_RESET_N

DST_CLK

DST_RESET_N

SLV_CLK

SLV_RESET_N

MST_CLK

MST_RESET_N

HOST_RESET_N

HOST_CLK_AXI

HOST_CLK

TIMEBASE_CLK

TIMEBASE_RESET_N

HOST Clock Domain

CAN Clock Domain

Timebase Clock Domain

CLOCK_ACTIVE

CLOCK_ACTIVE

CLK

RESET_N

Figure: XCAND_TOP clock & reset

These are required clock frequencies for the clock domains HOST, CAN and TIMEBASE:

HOST: min. CAN frequency, typ. 160MHz, max. 320MHz

Customers may also use other frequencies within this range.

Note that the frequency of the MH clock impacts the performance of the message handling, e.g.,

message filtering.

CAN: 80MHz for Classical CAN and CAN FD operation only.

CAN: 160MHz for Classical CAN, CAN FD and CAN XL operation.

TOP_60

TOP_72

TOP_996

TOP_73

TOP_74

TOP_75

TOP_76

TOP_89

TOP_90

TOP_78

TOP_79

TOP_80

TOP_81

TOP_82

TOP_83

TOP_84

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

299 | 306

Other frequencies are not recommended to be used as this will lead to problems with respect to

interoperability with other CAN devices.

TIMEBASE: min. 80MHz, typ. 160MHz, max. 320MHz

Customers may also use other frequencies within this range.

All clock domains can be supplied with clocks which are asynchronous to each other. The X_CAN IP

internally handles all clock domain crossings, fully transparent for the user.

1.8.1.1 Behavior While Not Clocked

Here below is the X_CAN behavior when its clocks are off:

• Accessing the HOST_AXI when the HOST_CLK_AXI is inactive will result in a hang-up.

• Accessing the PRT through the HOST_AXI interface, when the CAN_CLK_AXI is inactive, will result in a

timeout.

1.8.2 Resets

1.8.2.1 Behavior While Reset Active

Here below is the X_CAN behavior when its resets are active, or its clocks are off:

• Accessing the HOST_AXI while reset (HOST_RESET_N=0) will result in a hang-up.

• Accessing the PRT through the HOST_AXI interface while reset (CAN_RESET_N=0) will result in a

timeout.

1.9 Application Information

1.9.1 Bit Rate and Performance

The bit rates (nominal bit rate, FD Data bit rate, XL Data bit rate) supported by the X_CAN IP depend

on the system parameters: host clock frequency, CAN clock frequency, number of RX filter elements,

and latency to the memories L_MEM and S_MEM.

An excel-sheet [6] is provided with the X_CAN IP to check if a specific combination of bit rates

(nominal bit rate, FD Data bit rate, XL Data bit rate) and S_MEM/L_MEM latencies is functional under

specific system parameters. Here below is an extract of a configuration set in the excel-sheet [6].

The X_CAN IP module is set to support:

• Nominal bit rate: 0.8 Mbit/s

• FD Data bit rate: 8 Mbit/s

• XL Data bit rate: 20 Mbit/s (CAN_CLK frequency: 160 MHz)

• RX Filter elements used: 128 (all use two comparisons of 32bit)

• L_MEM data read latency up to 6 clock cycles

• L_MEM shared by <=2 X_CAN instances

• SYS_MEM latency: <=5.5 us

TOP_85

TOP_86

TOP_77

TOP_998

TOP_999

TOP_1001

TOP_1002

TOP_997

TOP_989

TOP_949

TOP_952

TOP_955

TOP_191

TOP_929

TOP_930

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

300 | 306

The excel-sheet [6] is providing the following results

• HOST_CLK frequency: >=153 MHz

• Maximum system latency: <= 5.7 us

1.9.2 Time Stamping Offset

Due to internal propagation delays for the timestamping in the Protocol Controller (1 CAN clock cycle)

and the clock domain crossing for the time capturing (n clock cycles, depending on the clock

frequency ratio between the CAN and the TIMBASE domain) a certain offset has to be considered to

derive the correct time.

These are the formulas for the offset:

TS_offset_max = 2 CAN_CLK period + 3 TIMEBASE_CLK period

TS_offset_min = 2 CAN_CLK period + 2 TIMEBASE_CLK period

This is the formula for the corrected timestamp:

Corrected Timestamp = Timestamp in TX/RX descriptor - TS_offset

The following table shows offsets for typical clock frequencies:

The first two columns contain the clock frequencies of the CAN_CLK and the TIMEBASE_CLK,

measured in MHz. The third and fourth column contain the minimum and maximum TS_offset of the

captured timestamp in multiple of TIMEBASE_CLK cycles, stored in the TX/RX descriptors. The last

two columns show the interpretation of the TS_offset in nano seconds.

CAN_CLK

[MHz]

TIMEBASE_CLK

[MHz]

TS_offset_min

[TIMEBASE_CLK

cycles]

TS_offset_max

[TIMEBASE_CLK

cycles]

TS_offset_min

[ns]

TS_offset_max

[ns]

80 80 4 5 50,00 62,50

80 160 6 7 37,50 43,75

80 240 8 9 33,33 37,50

80 320 10 11 31,25 34,38

160 80 3 4 37,50 50,00

160 160 4 5 25,00 31,25

160 320 6 7 18,75 21,88

1.10 Detailed Design Information

1.10.1 Memory needs

TOP_1004

TOP_1005

TOP_1006

TOP_1007

TOP_1008

TOP_1009

TOP_144

TOP_149

TOP_150

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

301 | 306

The X_CAN needs a Local Memory (L_MEM) which is a synchronous RAM with 32 bit data, connected

via MEM_AXI interface. The L_MEM stores RX filter elements, Header Descriptors for TX FIFO queues

and TX Priority Queue.

For example, one X_CAN consumes 4 kB of memory space when using 128 filter elements (5x32 bit

words per Filter element) and 256 reference pairs (value and mask) and 8 TX FIFO queues and 32 TX

Priority queue slots.

The X_CAN provides a 16 bit address for the RAM to be able to address more than 4 kB. This

additional address space is foreseen e.g., for using more filters and to support a Cluster Architecture

where multiple X_CAN share one bigger L_MEM.

The data load at the L_MEM is typically very high and has to be considered for the X_CAN

configuration. It is recommended to use [6] for cross-check.

1.11 Glossary

Term/Acronym Meaning

ATPG Automatic Test Pattern Generation/Generator

BCD Binary Coded Decimal

CAN Controller Area Network

CAN CC CAN classic (a.k.a Classical CAN)

CAN FD CAN flexible data rate (includes CC)

CAN XL CAN extended data Length (includes CC and FD)

CDC Clock Domain Crossing

CPU Central Processing Unit

CRC Cyclic Redundancy Check used for data consistency check

DMA Direct Memory Access

DST Destination (data destination)

E_MEM External Memory accessible off chip

EMI ElectroMagnetic Interference

FF(s) Flip-Flop(s)

FIXED The data are read/written from/to a fixed address, useful for FIFO accesses. See

[5] for more details

FM_PLL Phase Lock Loop with Frequency Modulation to spread the noise spectrum

GPIO General Purpose Input / Output

HDP Hardware Debug Port

HOST This is the CPU which is hosting the X_CAN

HW Hardware

INCR Successive data are read/written using an incremental address. See [5] for more

details

IP Intellectual property e.g., the X_CAN

TOP_151

TOP_926

TOP_927

1

2

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

302 | 306

IRC Interrupt Controller

IRQ Interrupt Request

ISO International Standardization Organization

L_MEM Local Memory accessible on chip

LSB Least Significant Bit

MEM Memory

MESSAGE The information package to be transported on the CAN bus

MH Message Handler

MSB Most Significant Bit

MSG Message, see MESSAGE

MUX Multiplexer

NA Not Applicable

OTP One-time Programmable memory

OUTSTANDING Refer to AXI protocol capability to issue/receive multiple transactions.

- for an AXI slave: the number of outstanding transactions is the number of

commands a slave is able to receive without blocking the response.

- for an AXI master: the number of outstanding transactions is the number of

commands a master is able to send without waiting for the response.

Outstanding capability for read and write transactions are independent.

PARITY Parity bit used for data consistency check

PLL Phase Locked Loop

PRT Protocol Controller

PWM Pulse Width Modulation

PWME Pulse Width Modulation Encoder

PWML PWM long phase length

PWMO PWM time offset parameter

PWMS PWM short phase length

QUEUE Buffer e.g., for Messages

RTL Register Transfer Level (design abstraction level)

RX Receive, e.g., reception of a frame on the CAN bus

S_MEM System Memory. This memory could be an on-chip RAM or an E_MEM

SW Software

SRAM On chip RAM

SRC Source (data source)

SW Acronym to define CPU executing code

TX Transmit, e.g., transmission of a frame on the CAN bus

TX SCAN Process used to select the TX message having the highest priority before sending

if to the PRT

VHDL VHSIC Hardware Description Language

VHSIC Very High-Speed Integrated Circuit

WORD Data word used by X_CAN architecture = 32 bit = DWORD

WRAP The data can be read/written using a wrap address strategy. See [5] for more

details

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

303 | 306

X_CAN Family of CAN IP supporting CAN XL protocol

XCAND X_CAN with embedded DMA

1.12 References

This document refers to the following documents:

Ref Author(s) Title

[1] ISO ISO 11898-1:2015 CAN data link layer and physical signaling

[2] CAN in Automation CiA 610-1 CAN XL Protocol Specification, V1.0.0, 2021-11-30

[3] Not Applicable

[4] Not Applicable

[5] AXI4 ARM IHI 0022E (ID022613)

[6] ME-IC/PAY calc_min_host_clk_freq_and_max_sys_latency.xlsx Revision 1.12

1.13 Revision History

Version Date Description

0.1 02 Aug 2021

TOP Revision History: 0.0.4

MH Revision History: 0.0.59

PRT Revision History: 1.0.11

PWM Revision History: 1.0.3

IP Version: Beta (for internal use only)

1.1 08 Nov 2021

TOP Revision History: 0.0.9

MH Revision History: 0.1.17

PRT Revision History: 1.0.19

PWM Revision History: 1.0.5

IP Version: PreFreeze (for internal use only)

2.0 20 Dec 2021

TOP Revision History: 1.0.0

MH Revision History: 1.0.0

PRT Revision History: 1.0.29

PWM Revision History: 1.0.6

IP Version: FreezeRC (for internal use only)

2.3 02 Mar 2022

TOP Revision History: 1.0.6

MH Revision History: 1.0.11

PRT Revision History: 1.0.38

PWM Revision History: 1.0.6

1

2

3

4

5

18

15

8

11

TOP_158

TOP_1027

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

304 | 306

Version Date Description

IP Version: FreezeRC2 (for internal use only)

2.4 04 Apr 2022

TOP Revision History: 1.0.6

MH Revision History: 1.0.15

PRT Revision History: 1.0.40

PWM Revision History: 1.0.6

IP Version: FreezeRC3 (for internal use only)

2.8 05 May 2022

TOP Revision History: 1.0.8

MH Revision History: 1.0.18

PRT Revision History: 1.0.43

PWM Revision History: 1.0.6

IP Version: FreezeRC4 (for internal use only)

2.10 21 May 2022

TOP Revision History: 1.0.8

MH Revision History: 1.0.19

PRT Revision History: 1.0.43

PWM Revision History: 1.0.6

IP Version: FreezeRC5 (for internal use only)

3.2 19 Jul 2022 IP Version: R1.0.0

3.3 10 Aug 2022

IP Version: R1.0.1

• When a new RX frame is received, while processing
the current RX frame (could be during RX filtering or
afterwards), the new RX frame is discarded. In the
previous release, the current RX frame is discarded,
when a new RX frame starts while the RX filtering of
the current RX frame is still in progress.

3.5 02 Nov 2022

IP Version R1.0.2

• The END bit was described and mentioned in the
“TX descriptor Description” table but was missing in
the “TX FIFO Queue Descriptor Overview” table in
section TX Descriptor in MH chapter

3.8 28 Dec 2023

IP Version R1.1.0

• Add support of 20Mbps for CAN XL

• Correct TX Priority Queue Descriptor Overview and

TX FIFO Queue Descriptor Overview tables

(PLSRC bit field was not at the right position and the

size of the SIZE bit field was not correct, change

from 8 to 9)

• Minor correction on RX FIFO Queue schematics on

MH section

• Complete and add details on X_CAN feature list

• Add details on RX Filter match computation in RX

Filter section

• Add details on Rolling Counter (RC[4:0]) in RX/TX

descriptor

• Add note on TX statistics counter in case of

arbitration lost

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

305 | 306

Version Date Description

3.9 28 Feb 2024

IP Version R1.1.0

• Change organisation name in documents and

references

1.14 Disclaimer

LEGAL NOTICE

© Copyright 2008-2024 by Robert Bosch GmbH and its licensors. All rights reserved.

"Bosch" is a registered trademark of Robert Bosch GmbH.

The content of this document is subject to continuous developments and improvements. All

particulars and its use contained in this document are given by BOSCH in good faith.

NO WARRANTIES: TO THE MAXIMUM EXTENT PERMITTED BY LAW, NEITHER THE INTELLECTUAL

PROPERTY OWNERS, COPYRIGHT HOLDERS AND CONTRIBUTORS, NOR ANY PERSON, EITHER

EXPRESSLY OR IMPLICITLY, WARRANTS ANY ASPECT OF THIS SPECIFICATION, SOFTWARE RELATED

THERETO, CODE AND/OR PROGRAM RELATED THERETO, INCLUDING ANY OUTPUT OR RESULTS OF

THIS SPECIFICATION, SOFTWARE RELATED THERETO, CODE AND/OR PROGRAM RELATED THERETO

UNLESS AGREED TO IN WRITING. THIS SPECIFICATION, SOFTWARE RELATED THERETO, CODE

AND/OR PROGRAM RELATED THERETO IS BEING PROVIDED "AS IS", WITHOUT ANY WARRANTY OF

ANY TYPE OR NATURE, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, AND ANY

WARRANTY THAT THIS SPECIFICATION, SOFTWARE RELATED THERETO, CODE AND/OR PROGRAM

RELATED THERETO IS FREE FROM DEFECTS.

ASSUMPTION OF RISK: THE RISK OF ANY AND ALL LOSS, DAMAGE, OR UNSATISFACTORY

PERFORMANCE OF THIS SPECIFICATION (RESPECTIVELY THE PRODUCTS MAKING USE OF IT IN PART

OR AS A WHOLE), SOFTWARE RELATED THERETO, CODE AND/OR PROGRAM RELATED THERETO

RESTS WITH YOU AS THE USER. TO THE MAXIMUM EXTENT PERMITTED BY LAW, NEITHER THE

INTELLECTUAL PROPERTY OWNERS, COPYRIGHT HOLDERS AND CONTRIBUTORS, NOR ANY PERSON

EITHER EXPRESSLY OR IMPLICITLY, MAKES ANY REPRESENTATION OR WARRANTY REGARDING THE

APPROPRIATENESS OF THE USE, OUTPUT, OR RESULTS OF THE USE OF THIS SPECIFICATION,

SOFTWARE RELATED THERETO, CODE AND/OR PROGRAM RELATED THERETO IN TERMS OF ITS

CORRECTNESS, ACCURACY, RELIABILITY, BEING CURRENT OR OTHERWISE. NOR DO THEY HAVE ANY

OBLIGATION TO CORRECT ERRORS, MAKE CHANGES, SUPPORT THIS SPECIFICATION, SOFTWARE

RELATED THERETO, CODE AND/OR PROGRAM RELATED THERETO, DISTRIBUTE UPDATES, OR

PROVIDE NOTIFICATION OF ANY ERROR OR DEFECT, KNOWN OR UNKNOWN. IF YOU RELY UPON THIS

SPECIFICATION, SOFTWARE RELATED THERETO, CODE AND/OR PROGRAM RELATED THERETO, YOU

DO SO AT YOUR OWN RISK, AND YOU ASSUME THE RESPONSIBILITY FOR THE RESULTS. SHOULD

THIS SPECIFICATION, SOFTWARE RELATED THERETO, CODE AND/OR PROGRAM RELATED THERETO

DS_5

DS_7

 X_CAN

Version 3.9 Bosch Automotive Electronics

28 February 2024
ME-IC/PAY

306 | 306

PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL LOSSES, INCLUDING, BUT NOT LIMITED TO, ANY

NECESSARY SERVICING, REPAIR OR CORRECTION OF ANY PROPERTY INVOLVED TO THE MAXIMUM

EXTEND PERMITTED BY LAW.

DISCLAIMER: IN NO EVENT, UNLESS REQUIRED BY LAW OR AGREED TO IN WRITING, SHALL THE

INTELLECTUAL PROPERTY OWNERS, COPYRIGHT HOLDERS OR ANY PERSON BE LIABLE FOR ANY

LOSS, EXPENSE OR DAMAGE, OF ANY TYPE OR NATURE ARISING OUT OF THE USE OF, OR INABILITY

TO USE THIS SPECIFICATION, SOFTWARE RELATED THERETO, CODE AND/OR PROGRAM RELATED

THERETO, INCLUDING, BUT NOT LIMITED TO, CLAIMS, SUITS OR CAUSES OF ACTION INVOLVING

ALLEGED INFRINGEMENT OF COPYRIGHTS, PATENTS, TRADEMARKS, TRADE SECRETS, OR UNFAIR

COMPETITION.

INDEMNIFICATION: TO THE MAXIMUM EXTEND PERMITTED BY LAW YOU AGREE TO INDEMNIFY AND

HOLD HARMLESS THE INTELLECTUAL PROPERTY OWNERS, COPYRIGHT HOLDERS AND

CONTRIBUTORS, AND EMPLOYEES, AND ANY PERSON FROM AND AGAINST ALL CLAIMS, LIABILITIES,

LOSSES, CAUSES OF ACTION, DAMAGES, JUDGMENTS, AND EXPENSES, INCLUDING THE

REASONABLE COST OF ATTORNEYS' FEES AND COURT COSTS, FOR INJURIES OR DAMAGES TO THE

PERSON OR PROPERTY OF THIRD PARTIES, INCLUDING, WITHOUT LIMITATIONS, CONSEQUENTIAL,

DIRECT AND INDIRECT DAMAGES AND ANY ECONOMIC LOSSES, THAT ARISE OUT OF OR IN

CONNECTION WITH YOUR USE, MODIFICATION, OR DISTRIBUTION OF THIS SPECIFICATION,

SOFTWARE RELATED THERETO, CODE AND/OR PROGRAM RELATED THERETO, ITS OUTPUT, OR ANY

ACCOMPANYING DOCUMENTATION.

GOVERNING LAW: THE RELATIONSHIP BETWEEN YOU AND ROBERT BOSCH GMBH SHALL BE

GOVERNED SOLELY BY THE LAWS OF THE FEDERAL REPUBLIC OF GERMANY. THE STIPULATIONS OF

INTERNATIONAL CONVENTIONS REGARDING THE INTERNATIONAL SALE OF GOODS SHALL NOT BE

APPLICABLE. THE EXCLUSIVE LEGAL VENUE SHALL BE DUESSELDORF, GERMANY.

MANDATORY LAW SHALL BE UNAFFECTED BY THE FOREGOING PARAGRAPHS.

INTELLECTUAL PROPERTY OWNERS/COPYRIGHT OWNERS/CONTRIBUTORS: ROBERT BOSCH GMBH,

ROBERT BOSCH PLATZ 1, 70839 GERLINGEN, GERMANY AND ITS LICENSORS.

	1. X_CAN
	1.1 Features
	1.2 Block Diagram
	1.3 TOP - Top Level
	1.3.1 Software Interface
	1.3.2 Functional Description
	1.3.2.1 AXI Multiplexer
	1.3.2.2 Message Handler
	1.3.2.3 Protocol Controller
	1.3.2.4 PWME
	1.3.2.5 Hardware Debug Port
	1.3.2.6 Interrupt controller

	1.4 MH – Message Handler
	1.4.1 Overview
	1.4.2 Features
	1.4.3 Block Diagram
	1.4.4 Software Interface
	1.4.4.1 Register Map
	1.4.4.2 Register Description
	1.4.4.2.1 xcand_mh_creg
	1.4.4.2.1.1 VERSION
	1.4.4.2.1.2 MH_CTRL
	1.4.4.2.1.3 MH_CFG
	1.4.4.2.1.4 MH_STS
	1.4.4.2.1.5 MH_SFTY_CFG
	1.4.4.2.1.6 MH_SFTY_CTRL
	1.4.4.2.1.7 RX_FILTER_MEM_ADD
	1.4.4.2.1.8 TX_DESC_MEM_ADD
	1.4.4.2.1.9 AXI_ADD_EXT
	1.4.4.2.1.10 AXI_PARAMS
	1.4.4.2.1.11 MH_LOCK
	1.4.4.2.1.12 TX_DESC_ADD_PT
	1.4.4.2.1.13 TX_STATISTICS
	1.4.4.2.1.14 TX_FQ_STS0
	1.4.4.2.1.15 TX_FQ_STS1
	1.4.4.2.1.16 TX_FQ_CTRL0
	1.4.4.2.1.17 TX_FQ_CTRL1
	1.4.4.2.1.18 TX_FQ_CTRL2
	1.4.4.2.1.19 TX_FQ_ADD_PT0
	1.4.4.2.1.20 TX_FQ_START_ADD0
	1.4.4.2.1.21 TX_FQ_SIZE0
	1.4.4.2.1.22 TX_FQ_ADD_PT1
	1.4.4.2.1.23 TX_FQ_START_ADD1
	1.4.4.2.1.24 TX_FQ_SIZE1
	1.4.4.2.1.25 TX_FQ_ADD_PT2
	1.4.4.2.1.26 TX_FQ_START_ADD2
	1.4.4.2.1.27 TX_FQ_SIZE2
	1.4.4.2.1.28 TX_FQ_ADD_PT3
	1.4.4.2.1.29 TX_FQ_START_ADD3
	1.4.4.2.1.30 TX_FQ_SIZE3
	1.4.4.2.1.31 TX_FQ_ADD_PT4
	1.4.4.2.1.32 TX_FQ_START_ADD4
	1.4.4.2.1.33 TX_FQ_SIZE4
	1.4.4.2.1.34 TX_FQ_ADD_PT5
	1.4.4.2.1.35 TX_FQ_START_ADD5
	1.4.4.2.1.36 TX_FQ_SIZE5
	1.4.4.2.1.37 TX_FQ_ADD_PT6
	1.4.4.2.1.38 TX_FQ_START_ADD6
	1.4.4.2.1.39 TX_FQ_SIZE6
	1.4.4.2.1.40 TX_FQ_ADD_PT7
	1.4.4.2.1.41 TX_FQ_START_ADD7
	1.4.4.2.1.42 TX_FQ_SIZE7
	1.4.4.2.1.43 TX_PQ_STS0
	1.4.4.2.1.44 TX_PQ_STS1
	1.4.4.2.1.45 TX_PQ_CTRL0
	1.4.4.2.1.46 TX_PQ_CTRL1
	1.4.4.2.1.47 TX_PQ_CTRL2
	1.4.4.2.1.48 TX_PQ_START_ADD
	1.4.4.2.1.49 RX_DESC_ADD_PT
	1.4.4.2.1.50 RX_STATISTICS
	1.4.4.2.1.51 RX_FQ_STS0
	1.4.4.2.1.52 RX_FQ_STS1
	1.4.4.2.1.53 RX_FQ_STS2
	1.4.4.2.1.54 RX_FQ_CTRL0
	1.4.4.2.1.55 RX_FQ_CTRL1
	1.4.4.2.1.56 RX_FQ_CTRL2
	1.4.4.2.1.57 RX_FQ_ADD_PT0
	1.4.4.2.1.58 RX_FQ_START_ADD0
	1.4.4.2.1.59 RX_FQ_SIZE0
	1.4.4.2.1.60 RX_FQ_DC_START_ADD0
	1.4.4.2.1.61 RX_FQ_RD_ADD_PT0
	1.4.4.2.1.62 RX_FQ_ADD_PT1
	1.4.4.2.1.63 RX_FQ_START_ADD1
	1.4.4.2.1.64 RX_FQ_SIZE1
	1.4.4.2.1.65 RX_FQ_DC_START_ADD1
	1.4.4.2.1.66 RX_FQ_RD_ADD_PT1
	1.4.4.2.1.67 RX_FQ_ADD_PT2
	1.4.4.2.1.68 RX_FQ_START_ADD2
	1.4.4.2.1.69 RX_FQ_SIZE2
	1.4.4.2.1.70 RX_FQ_DC_START_ADD2
	1.4.4.2.1.71 RX_FQ_RD_ADD_PT2
	1.4.4.2.1.72 RX_FQ_ADD_PT3
	1.4.4.2.1.73 RX_FQ_START_ADD3
	1.4.4.2.1.74 RX_FQ_SIZE3
	1.4.4.2.1.75 RX_FQ_DC_START_ADD3
	1.4.4.2.1.76 RX_FQ_RD_ADD_PT3
	1.4.4.2.1.77 RX_FQ_ADD_PT4
	1.4.4.2.1.78 RX_FQ_START_ADD4
	1.4.4.2.1.79 RX_FQ_SIZE4
	1.4.4.2.1.80 RX_FQ_DC_START_ADD4
	1.4.4.2.1.81 RX_FQ_RD_ADD_PT4
	1.4.4.2.1.82 RX_FQ_ADD_PT5
	1.4.4.2.1.83 RX_FQ_START_ADD5
	1.4.4.2.1.84 RX_FQ_SIZE5
	1.4.4.2.1.85 RX_FQ_DC_START_ADD5
	1.4.4.2.1.86 RX_FQ_RD_ADD_PT5
	1.4.4.2.1.87 RX_FQ_ADD_PT6
	1.4.4.2.1.88 RX_FQ_START_ADD6
	1.4.4.2.1.89 RX_FQ_SIZE6
	1.4.4.2.1.90 RX_FQ_DC_START_ADD6
	1.4.4.2.1.91 RX_FQ_RD_ADD_PT6
	1.4.4.2.1.92 RX_FQ_ADD_PT7
	1.4.4.2.1.93 RX_FQ_START_ADD7
	1.4.4.2.1.94 RX_FQ_SIZE7
	1.4.4.2.1.95 RX_FQ_DC_START_ADD7
	1.4.4.2.1.96 RX_FQ_RD_ADD_PT7
	1.4.4.2.1.97 TX_FILTER_CTRL0
	1.4.4.2.1.98 TX_FILTER_CTRL1
	1.4.4.2.1.99 TX_FILTER_REFVAL0
	1.4.4.2.1.100 TX_FILTER_REFVAL1
	1.4.4.2.1.101 TX_FILTER_REFVAL2
	1.4.4.2.1.102 TX_FILTER_REFVAL3
	1.4.4.2.1.103 RX_FILTER_CTRL
	1.4.4.2.1.104 TX_FQ_INT_STS
	1.4.4.2.1.105 RX_FQ_INT_STS
	1.4.4.2.1.106 TX_PQ_INT_STS0
	1.4.4.2.1.107 TX_PQ_INT_STS1
	1.4.4.2.1.108 STATS_INT_STS
	1.4.4.2.1.109 ERR_INT_STS
	1.4.4.2.1.110 SFTY_INT_STS
	1.4.4.2.1.111 AXI_ERR_INFO
	1.4.4.2.1.112 DESC_ERR_INFO0
	1.4.4.2.1.113 DESC_ERR_INFO1
	1.4.4.2.1.114 TX_FILTER_ERR_INFO
	1.4.4.2.1.115 DEBUG_TEST_CTRL
	1.4.4.2.1.116 INT_TEST0
	1.4.4.2.1.117 INT_TEST1
	1.4.4.2.1.118 TX_SCAN_FC
	1.4.4.2.1.119 TX_SCAN_BC
	1.4.4.2.1.120 TX_FQ_DESC_VALID
	1.4.4.2.1.121 TX_PQ_DESC_VALID
	1.4.4.2.1.122 CRC_CTRL
	1.4.4.2.1.123 CRC_REG

	1.4.4.3 Local Memory Map (L_MEM Map)
	1.4.4.3.1 TX Descriptors
	1.4.4.3.2 RX Filter Elements and Ref/Mask Pairs

	1.4.5 Functional Description
	1.4.5.1 TX Message Handler
	1.4.5.1.1 Block Diagram
	1.4.5.1.2 Block Description
	1.4.5.1.2.1 TX DMA CHANNEL INTERFACE:
	1.4.5.1.2.2 TX MESSAGE CONTROLLER:
	1.4.5.1.2.3 TX QUEUE CONTROLLER:

	1.4.5.2 RX Message Handler
	1.4.5.2.1 Block Diagram
	1.4.5.2.2 Block Description
	1.4.5.2.2.1 RX DMA CHANNEL
	1.4.5.2.2.2 RX MESSAGE CONTROLLER
	1.4.5.2.2.3 RX QUEUE CONTROLLER

	1.4.5.3 Descriptor Message Handler
	1.4.5.3.1 Block Diagram
	1.4.5.3.2 Block Description
	1.4.5.3.2.1 TX_DESC_CONTROLLER
	1.4.5.3.2.2 TX_DESC_DMA_CHANNEL
	1.4.5.3.2.3 RX_DESC_CONTROLLER
	1.4.5.3.2.4 RX_DESC_DMA_CHANNEL
	1.4.5.3.2.5 ACK_DESC_CONTROLLER:
	1.4.5.3.2.6 ACK_DESC_DMA_CHANNEL

	1.4.5.4 DMA Message Handler
	1.4.5.4.1 Block Diagram
	1.4.5.4.2 Block Description
	1.4.5.4.2.1 DMA_WRITE_CH_CORE:
	1.4.5.4.2.2 DMA_READ_CH_CORE:

	1.4.5.4.3 Data Transfer Mode
	1.4.5.4.4 Data Transfer Description
	1.4.5.4.4.1 Address bus
	1.4.5.4.4.2 Burst size
	1.4.5.4.4.3 Burst length
	1.4.5.4.4.4 Outstanding
	1.4.5.4.4.5 Burst type
	1.4.5.4.4.6 Multi-region
	1.4.5.4.4.7 Memory attributes
	1.4.5.4.4.8 Access permissions
	1.4.5.4.4.9 Transaction ID

	1.4.5.5 TX Descriptor
	1.4.5.5.1 TX Priority Queue Descriptor Overview
	1.4.5.5.2 TX FIFO Queue Descriptor overview
	1.4.5.5.3 TX Descriptor Description
	1.4.5.5.4 TX Descriptor CRC Computation
	1.4.5.5.5 TX Descriptor Errors

	1.4.5.6 TX Message Header Definition
	1.4.5.7 RX Descriptor
	1.4.5.7.1 RX FIFO Queue Descriptor Overview (Normal Mode)
	1.4.5.7.2 RX FIFO Queue Descriptor Overview (Continuous Mode)
	1.4.5.7.3 RX Descriptor Description
	1.4.5.7.4 CRC Computation
	1.4.5.7.5 RX Descriptor Errors

	1.4.5.8 RX Message Header Definition
	1.4.5.9 TX Message
	1.4.5.9.1 Single TX descriptor Usage

	1.4.5.10 RX Message in Normal Mode
	1.4.5.10.1 Single RX Descriptor
	1.4.5.10.2 Multiple RX Descriptor

	1.4.5.11 RX Message in Continuous Mode
	1.4.5.12 Descriptor Acknowledgement
	1.4.5.12.1 RX Descriptor
	1.4.5.12.2 TX Descriptor

	1.4.5.13 TX FIFO Queue
	1.4.5.13.1 Basic Mode

	1.4.5.14 TX Priority Queue
	1.4.5.15 RX FIFO Queue in Normal Mode
	1.4.5.15.1 Fragmented Data Container
	1.4.5.15.2 Continuous Data Container

	1.4.5.16 RX FIFO Queue in Continuous Mode
	1.4.5.17 TX FIFO Queue Data Flow
	1.4.5.18 TX Priority Queue Data Flow
	1.4.5.19 RX FIFO Queue Data Flow in Normal Mode
	1.4.5.20 RX FIFO Queue Data Flow in Continuous Mode
	1.4.5.21 TX-SCAN
	1.4.5.22 TX Filter
	1.4.5.22.1 Global configuration
	1.4.5.22.2 Classical CAN
	1.4.5.22.3 CAN FD
	1.4.5.22.4 CAN XL

	1.4.5.23 RX Filter
	1.4.5.23.1 Global configuration
	1.4.5.23.2 Reference and Mask Pair
	1.4.5.23.3 RX Filter Element Definition
	1.4.5.23.4 RX Header Descriptor Updates
	1.4.5.23.5 MH Behavior According to RX Filter Setting
	1.4.5.23.6 Threshold computation
	1.4.5.23.7 RX Filter Processing Time

	1.4.5.24 Local Memory Controller
	1.4.5.24.1 Local Memory Side Band Signals
	1.4.5.24.2 Address Bus
	1.4.5.24.3 Burst Size
	1.4.5.24.4 Burst Length
	1.4.5.24.5 Outstanding
	1.4.5.24.6 Burst Type
	1.4.5.24.7 Multi-region
	1.4.5.24.8 Memory Attributes
	1.4.5.24.9 Access Permissions
	1.4.5.24.10 Transaction ID

	1.4.5.25 Trace and Debug
	1.4.5.25.1 Interrupts
	1.4.5.25.2 Hardware Debug Port
	1.4.5.25.3 TX-Scan
	1.4.5.25.4 TX Descriptor Tracking in a TX FIFO Queue
	1.4.5.25.5 TX Descriptor Tracking in TX Priority Queue
	1.4.5.25.6 Safety Measures

	1.4.5.26 RX and TX Statistics
	1.4.5.26.1 RX Statistic Counters
	1.4.5.26.2 TX Statistic Counters

	1.4.5.27 Register Access
	1.4.5.28 Register Protection
	1.4.5.28.1 Lock Mechanism Protection
	1.4.5.28.2 Conditional Access Protection
	1.4.5.28.3 Register Access Mode
	1.4.5.28.4 Register CRC Computation

	1.4.5.29 Error and Exception Handling
	1.4.5.30 Interrupts
	1.4.5.31 Clock and Reset

	1.4.6 Application Information
	1.4.6.1 Queue Status Flags
	1.4.6.2 Cluster
	1.4.6.3 Performances
	1.4.6.3.1 Core Clock Frequency
	1.4.6.3.2 TX-Scan
	1.4.6.3.3 RX Filter
	1.4.6.3.4 RX/TX Descriptors Memory Organization
	1.4.6.3.5 Data Payload Buffer Memory Organization
	1.4.6.3.6 High System Memory Latency

	1.4.7 Programming Guidelines
	1.4.7.1 Initial MH Start Procedure
	1.4.7.2 Stopping MH Procedure
	1.4.7.2.1.1 Full Stop

	1.4.7.3 RX FIFO Queue Initial Start
	1.4.7.4 Restarting a RX FIFO Queue
	1.4.7.5 Aborting a RX FIFO Queue
	1.4.7.6 TX FIFO Queue Initial Start
	1.4.7.7 Restarting a TX FIFO Queue
	1.4.7.8 Aborting a TX FIFO Queue
	1.4.7.9 TX Priority Queue Initialization
	1.4.7.10 Starting a TX Priority Queue Slot
	1.4.7.11 Aborting a TX Priority Queue slot
	1.4.7.12 RX Filter Setting
	1.4.7.13 TX Filter Setting
	1.4.7.14 Timeout Setting
	1.4.7.14.1 DMA_AXI Interface Timeout Configuration
	1.4.7.14.2 MEM_AXI Interface Timeout Configuration
	1.4.7.14.3 (RX/TX)_MSG Interface Timeout Configuration

	1.4.8 PRT and ENABLE Signal

	1.5 PRT – Protocol Controller
	1.5.1 Overview
	1.5.2 Features
	1.5.3 Block Diagram
	1.5.4 Software Interface
	1.5.4.1 Register Map
	1.5.4.1.1 Register Access

	1.5.4.2 Register Description
	1.5.4.2.1 status
	1.5.4.2.1.1 ENDN
	1.5.4.2.1.2 PREL
	1.5.4.2.1.3 STAT

	1.5.4.2.2 event
	1.5.4.2.2.1 EVNT

	1.5.4.2.3 control
	1.5.4.2.3.1 LOCK
	1.5.4.2.3.2 CTRL
	1.5.4.2.3.3 FIMC
	1.5.4.2.3.4 TEST

	1.5.4.2.4 configuration
	1.5.4.2.4.1 MODE
	1.5.4.2.4.2 NBTP
	1.5.4.2.4.3 DBTP
	1.5.4.2.4.4 XBTP
	1.5.4.2.4.5 PCFG

	1.5.5 Functional Description
	1.5.5.1 PRT static configuration
	1.5.5.2 Software Reset
	1.5.5.3 Operating Mode
	1.5.5.4 Starting and Stopping the Module
	1.5.5.5 Reaction on Exceptions at the TX_MSG and RX_MSG Interfaces
	1.5.5.5.1 MH Requests a Message with Invalid Frame Format in Header
	1.5.5.5.2 MH Intentionally Aborts TX_MSG Sequence
	1.5.5.5.3 Data Underrun Condition in TX_MSG Sequence Detected
	1.5.5.5.4 Unexpected Start of Sequence Detected
	1.5.5.5.5 Data Overflow Condition in RX_MSG Sequence Detected

	1.5.5.6 Controlling the Module’s Clock Input
	1.5.5.7 Transceiver Interface
	1.5.5.8 Hardware Timestamping
	1.5.5.8.1 Timestamping Function

	1.5.5.9 Trace and Debug

	1.5.6 Application Information

	1.6 PWME – Pulse Width Modulation Encoder
	1.6.1 Overview
	1.6.2 Features
	1.6.3 Block Diagram
	1.6.4 Software interface
	1.6.4.1 PWME Configuration (PWME_CFG)

	1.6.5 Functional description
	1.6.5.1 Transparent Mode
	1.6.5.2 PWM encoded Mode
	1.6.5.2.1 Transmitting Node
	1.6.5.2.2 Receiving Node

	1.7 IRC - Interrupt Controller
	1.7.1 Overview
	1.7.2 Software Interface
	1.7.2.1 Register Map
	1.7.2.2 Register Description
	1.7.2.2.1 Event
	1.7.2.2.1.1 FUNC_RAW
	1.7.2.2.1.2 ERR_RAW
	1.7.2.2.1.3 SAFETY_RAW

	1.7.2.2.2 Control
	1.7.2.2.2.1 FUNC_CLR
	1.7.2.2.2.2 ERR_CLR
	1.7.2.2.2.3 SAFETY_CLR
	1.7.2.2.2.4 FUNC_ENA
	1.7.2.2.2.5 ERR_ENA
	1.7.2.2.2.6 SAFETY_ENA

	1.7.2.2.3 Configuration
	1.7.2.2.3.1 CAPTURING_MODE

	1.7.2.2.4 Auxiliary
	1.7.2.2.4.1 HDP

	1.7.3 Functional Description

	1.8 Clock Domains and Resets
	1.8.1 Clock Domains
	1.8.1.1 Behavior While Not Clocked

	1.8.2 Resets
	1.8.2.1 Behavior While Reset Active

	1.9 Application Information
	1.9.1 Bit Rate and Performance
	1.9.2 Time Stamping Offset

	1.10 Detailed Design Information
	1.10.1 Memory needs

	1.11 Glossary
	1.12 References
	1.13 Revision History
	1.14 Disclaimer

