

Rapid Software Development for GTM Applications A software view on virtual prototyping

GTM TechDay, Livonia, MI, October 10, 2017

Products and Services for the Automotive Value Chain

Embedded Software Services and Products

Virtual Prototyping Services and Products

VLAB Virtual Platform Creation and Simulation Technology and Tools

Virtualization Based Design – All-in-Software
Remove dependencies on hardware
Virtual Platforms are created to serve the Design and Verification Process

Enhanced GTM Reference Model

- When we were using the Bosch GTM Reference Model for our software development projects, we found ourselves limited in terms of visibility and debuggability of the MCS cores
- Hence in partnership with Bosch we created an enhanced GTM Reference Model with advanced instrumentation, tracing, watchpoint, breakpoint and software stepping support

Enhanced GTM Reference Model

- Provides visibility and debug access to each channel, each MCS
- Register tracing to VTF or VCD (including internal register modifications)

Enhanced GTM Reference Model

- Instructions breakpoint and stepping for each MCS core (at Source and Instruction level)
- Full software source-level debug for GTM/MCS code
- Tracing, breakpoints, watchpoints on GTM MCS code, registers, buses (ARU/AEI), channels and IO

Waves

Signals

ATOMO OUTO =:

ATOMO OUT1 =(

ATOMO_OUT2 =:

ATOMO OUT3 =(

ATOMO_OUT4 =: ATOMO_OUT5 =: ATOMO_OUT6 =(ATOMO_OUT7 =)

Time

VLAB Virtual Platforms

Intermediate Architecture

- Virtual platforms don't necessarily have to represent a 'real' artefact, but can also provide an 'imaginary' stepping stone
- An example of such use is in a software migration project where an intermediate step serves to focus on the timer software first before adjusting the host CPU implementation

From Virtual Prototyping to Continuous Integration

- Once your software engineers have and use a virtual prototype they are likely to embrace Continuous Integration
 - Use licenses overnight for regression
 - Set up dedicated Jenkins server

- This requires the development of infrastructure to support continuous integration (CI) and the continuous delivery of automotive systems.
- To integrate as often and early as possible, practitioners should invest in virtualized integration platforms.
- This makes CI possible during the development process and minimizes dependency on other parts of the system.

Parallel Automated Test Regressions

9

- 24 256 CPU Farm,
- Running many simulations in parallel
- Large test suites executed in parallel at a faction of time

 VP test suite execution is faster than on HW

From Continuous Integration to All-in-Software

- Once Continuous Integration is there, engineers may embrace the concept of development without hardware
 - Bring more in software, earlier and later in the process
 - Specification models to develop tests early
 - Hardware models to circumvent shortage and dependencies
 - Connections to hardware later to capture behavior and compare
- We call this Virtualization Based Development or All-in-Software

Concurrent SW, HW, and TW (Testware) Development, Validation, and Optimization Continuous Build, Integration and Test with Rapid Iterations and Progress

Embedded Made Agile

Virtualization-Based Development All-in-Software

Definition / Specification

Architecture / Design

Implementation (Code/Test)

Validation

Optimization

Executable Specs CVR Tests **CTR Tests**

Arch / Design Platform **Design Verification Tests Performance Metrics**

Software, RTL SW Tests (Unit, Feature, ...) **RTL Tests**

SW, HW, System SW/HW/System Val Tests **Functional Safety Tests**

ECU Control System System KPI Tests **ECU Calibration Tests**

Key Use Cases:

- ✓ Reg Spec Analysis
- Rapid Spec Prototyping
- Early Test Development

Key Use Cases:

- ✓ Arch/Design Analysis
- ✓ Rapid Design Prototyping
- ✓ Early Test Development
- ✓ HW Spec Validation

Key Use Cases:

- ✓ SW Development
- ✓ SW/HW Integration
- ✓ SW Test
- ✓ HW HDL Test (SWIL)

Key Use Cases:

- ✓ SW/HW Validation
- System (OL/CL) Validation
- ✓ HILS Validation
- ✓ Functional Safety Analysis

Key Use Cases:

- ✓ BSP/BSW Optimization
- ✓ ECU SW Optimization
- ✓ ECU SW Calibration

Concurrent SW, HW, and TW (Testware) Development, Validation, and Optimization Continuous Build, Integration and Test with Rapid Iterations and Progress

Embedded Made Agile

VBD/AIS: Engine Management ECU

VBD/AIS: Engine Management ECU

ASTC GTM Software Libraries Powertrain Driver Software

Timer CDD SDK for Engine Control

ASTC GTM Software Libraries Serial Interfaces through GTM, e.g. CAN

Sending and receiving CAN-FD via GTM

GTM Products and Services

GTM Software Libraries	Both GTM microcode and CPU code libraries
	Powertrain functions
	Communication protocols (including CAN, CAN-FD)
Virtual Platforms	GTM Model Toolbox with enhanced GTM model
	MCU Virtual Platforms with integrated enhanced GTM (Aurix, RH850)
	ECU Virtual Platforms, including closed loop and HILS
Automotive	
Automotive	Migration support from eTPU to GTM
Software	Migration support from eTPU to GTM Complex low level timing control software
Software	Complex low level timing control software
Software Services Virtual Platform	Complex low level timing control software Engine control, motor control and others
Software Services Virtual	Complex low level timing control software Engine control, motor control and others Regression environments

www.vlabworks.com

Advancing the Technology of Electronic System Design

www.astc-design.com

Advancing the Design of Electronic Systems

North America **Chris Ward**<u>chris.ward@astc-design.com</u>

Europe

Ad Peeters

ad.peeters@astc-design.com